An Expert Opinion Elicitation Method Based on Bayesian Intervals Estimation and Computational Searching Algorithms: an Application to Oil Refinery Risk Analysis

> Paulo Alves Firmino, M.Sc. Romero L. M. Sales Filho , M.Sc. Enrique López Droguett, Ph.D.

9th International Probabilistic Safety Assessment and Management Conference (PSAM 9), Hong Kong-China on May 18-23, 2008

Eliciting Expert Judgments

- Scarcity of data in probabilistic risk analysis;
- One of the main drawbacks of these methods is the time required for their application;
- The application of an excessively time-consuming elicitation method may be prohibitive in practice;

Eliciting Expert Judgments

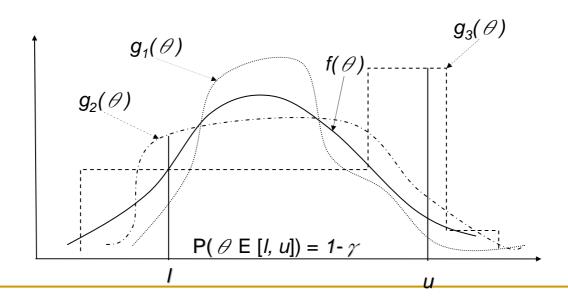
- The present paper presents an elicitation method;
- It is an attempt to capture the expert beliefs while being efficient, providing basis for aggregation, empirical control, and reasonable completeness, without losing simplicity;
- As a result, a set of Bayesian interval estimates of the unknown quantity is defined and inferences about its PDF underlying the expert beliefs are performed;
- An application to an oil refinery from Brazil is presented.

Presentation outline

- Bayesian interval estimation and computational searching algorithms;
- Proposed method;
- Example of application;
- Conclusions;

Computational Searching Algorithms

- In the computational context, searching algorithms such as sequential, Fibonacci and binary are well-known;
- The binary searching algorithm:

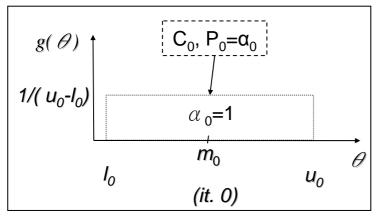

While θ is different of θ^m do:

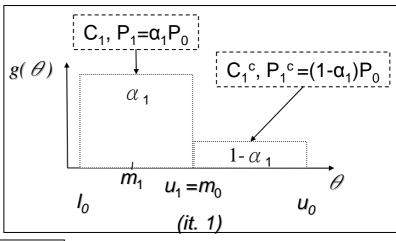
- i. If $\theta < \theta^m$ then u = m.
- ii. Else if $\theta > \theta^m$ then l = m.

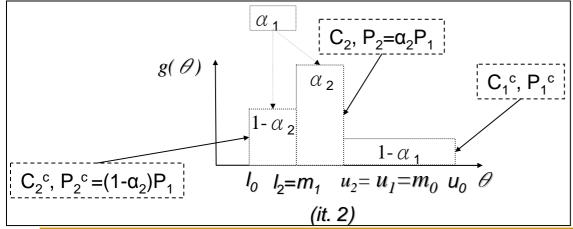
iii. Do
$$m = Int\left(\frac{l+u}{2}\right)$$
.

Bayesian Interval Estimation

- In practice, a PDF reflecting uncertainty about a parameter θ , $f(\theta)$, may be so much expensive or much consuming;
- In these cases, it may be more convenient for general orientation regarding the uncertainty about θ to simply describe intervals C of given probability, 1-γ, under f(θ);

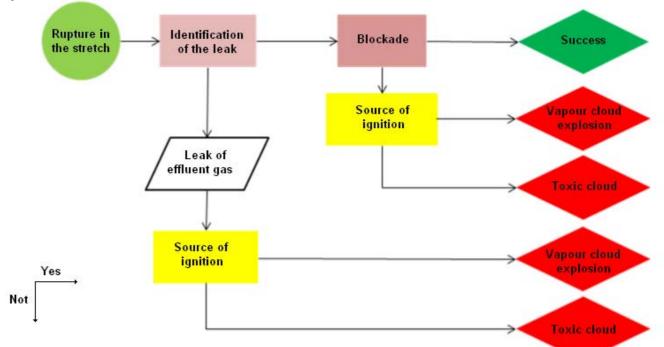



Proposed Method


- The questions at the ith iteration of the method can be formulated as follows:
 - Decision question: Given the previous decision ($\theta \in C_{i-1}$), do you think that θ lies inside the subinterval $[m_i, l_i]$ (or $[l_i, m_i]$)?
 - \Box Uncertainty question: What is the credible level, α_i , for this decision?
- $C_0 = [min, max]$ where $P_0 = P(\theta \in C_0) = \alpha_0 = 1.0$;
- Each C_i is defined by performing the binary search algorithm to find θ in the interval [min, max];
- $P_{i} = P(\theta \in C_{i}) = \alpha_{i}P_{i-1};$
- Each pair (C_i, P_i) composes a Bayesian interval estimate for θ under $f(\theta)$, the supposed PDF underlying the expert beliefs about θ.
- Stop criterion: when the expert is no longer able to decide which partition of C_i to take, for instance.

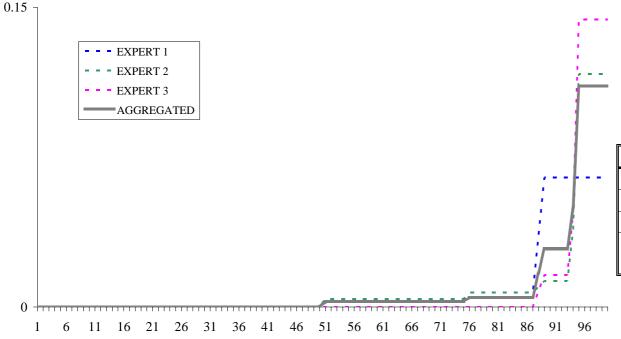
Proposed Method

Some iterations:


At the end of the it. 2 we have three Bayesian interval estimates:

$$P(\theta \in [l_0, l_2]) = \alpha_1(1 - \alpha_2)$$

 $P(\theta \in [l_2, u_2]) = \alpha_1 \alpha_2$
 $P(\theta \in [m_0, u_0]) = 1 - \alpha_1$


- Complex system involving the chemical process of cleaning and refining crude oil extracted from wells and mines;
- A refinery produces various derivatives of oil as lubricants, asphalt, coke, diesel, gasoline, LPG, naphtha, kerosene, and so on;
- Rarely data sources are available to quantify all the parameters involved in a quantitative risk analysis of an oil refinery.

- The method proposed in this work was used to quantify opinions of a group of experts with the objective of performing a PRA for an oil refinery project at Northeast of Brazil;
- It was considered situations involving operations of refining oil process that were classified by the experts as being moderated, critical or very critical risky to the people outside refinery:
 - PHA was adopted in this stage;
 - 12 out 133 situations analyzed in the PHA were classified as very critical risky;
 - Such situations were modeled by Event Sequence Diagrams;
 - The proposed method was adopted in order to quantify the probability of occurrence of related events.

- Illustration: Coke Unit
 - Specifically in the stretch that runs from the system top of the tower until the entry of MDEA Unit;
 - □ The experts have identified as a hazard a big release of hydrocarbon gas and H_2S , which can be caused by a rupture in the stretch (the initiator event);
 - The possible effects from the release of these substances are vapour cloud explosion and toxic cloud;

- Illustration: P(blockade | the identification of the leak)
 - □ The experts answered individually about such an event;

	Expert 1	Expert 2	Expert 3
Mean	0.90	0.92	0.96
Median	0.92	0.96	0.97
Mode	0.93	0.97	0.97
Standard			
Deviation	0.11	0.11	0.03

Conclusions

- Many of the elicitation methods are robust and sophisticated;
- However, some of them are not feasible to be applied in PRA problems due to the inherently large amount of parameters to be elicited and consequently to the long time required;
- Perhaps the main characteristic of the method is its efficiency, due to the computational searching;
- Although the binary searching method has been adopted here, other procedures such as the Fibonacci algorithm are also possible;

An Expert Opinion Elicitation Method Based on Bayesian Intervals Estimation and Computational Searching Algorithms: an Application to Oil Refinery Risk Analysis

> Paulo Alves Firmino, M.Sc. Romero L. M. Sales Filho , M.Sc. Enrique López Droguett, Ph.D.