

MCS BDD in RiskSpectrum[®]

Ola Bäckström, Manager Software

Introduction - Why MCS BDD?

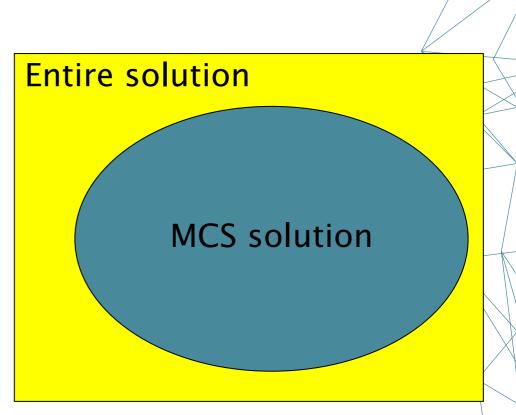
- In general: MCS with normal quantification fully sufficient
- Some cases: Increased accuracy in computation needed
 - Level 2
 - Area events
 - Seismic
- Requirements on speed are essential

Introduction – different ways to solve a FT/ET model

- Generation of MCS, minimal cut sets
 - Represents an approximate solution
 - Success events are not part of the result (generally)
 - Algorithms to quantify the top result based on MCS are approximate
 - Cut off
 - "Quick"
- Generation of BDD, binary decision diagrams, based on the FT/ET model
 - Represents the exact solution
 - Is very complex in large cases
 - May require cut-off
 - Time consuming and may not be able to generate results

Why MCS BDD?

- To use the positive characteristica of MCS generation
 - Speed!
 - Can always generate results
 - Easy/easier to select pivotal elements


• Address the main weaknesses

- Quantification of the MCS list
 - High probabilities will result in conservative results
 - This quantification problem is treated with MCS BDD
- Treatment of success events
 - Possibility to use "simple treatment" of chosen function events (top events in ET)
 - Selected function events (with high failure probability) can be treated numerically

Why MCS BDD, cont'd

- Remaining "drawback"
 - Based on the "truncated" solution
 - Cutoff have probably been applied
- The cut off has to be properly set!

The method

Generate MCS

- Based on normal analysis criteria
- Observe that negated events may be allowed in the solution
- Define "simple quantitative treatment" of function events if necessary

• Split of MCS list

- Part to be treated with BDD
- Part that can be treated with MCUB
 - Remember that MCUB is a conservative treatment

$$Q_{TOP,MCUB} = 1 - \prod_{i=1}^{n} (1 - Q_{MCS,i})$$

Generation of the BDD

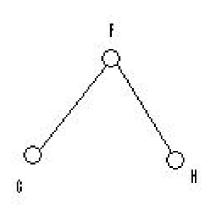
- The part of the MCS treated with BDD
 - Exact BDD treatment
 - Approximate BDD treatment
- Exact BDD
 - The normal BDD way of analyzing the problem
- Approximate BDD
 - An approximate solution
 - Very efficient in reducing the problem short run times

Approximate BDD, cont'd

- When an event is failed only MCS where the event is included is considered further (in that branch)
 - All the MCS not containing the event will be a part of the success branch
 - Can not be used when the event is negated in the cut set list
 - Require modification of the quantificiation algorithm
- Conservative dependencies between MCS are not treated exact. Error is very small if the pivotal element has low probability.
- The use of the approximate treatment is optional and is actuated by two different triggers:
 - FV importance below a specified level, default 1E-3
 - Unavailability below a specified level, default 1E-3

Quantification

- Exact BDD
 - For events that are above criteria


$$P_F \cdot P_G^1 + (1 - P_F) \cdot P_H^0$$

- Approximate BDD
 - For events that match none of the criterion
 - Pf * (Pg + Ph Pg * Ph) + (1 Pf) * Ph

 $P_F \cdot P_G^1 + (1 - P_F \cdot P_G^1) \cdot P_H^0$

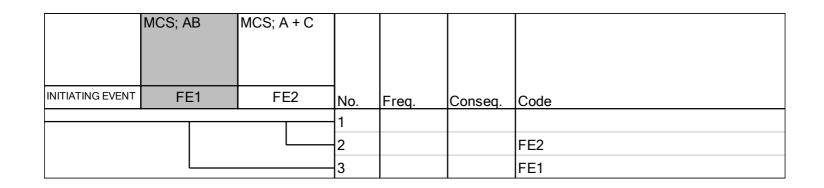
- MCUB for "remainder"
 - Specified by the user, e.g. 0,1%

Examples of results

Analysis case: CD	Value	Analysis case: Anonymous	Value
Exact MCS BDD	2.4356E-004	Exact MCS BDD	1.0487E-006
Approximate MCS BDD	2.4365E-004	Approximate MCS BDD	1.0487E-006
MinCutUpperBound	2.4466E-004	MinCutUpperBound	1.0731E-006
1 st order approximation	2.4471E-004	1 st order approximation	1.0732E-006

Example, quantification time

	MCUB	Threshold 1E-1	Threshold 1E-2	Threshold 5E-3	Threshold 2E-3
Result	2,75E-5	2,676E-5	2,674E-5	2,673E-5	2,673E-5
BDD Runtime	-	0,1	0,6	6,1	217



Inclusion of success events in the MCS List and BDD

- RiskSpectrum includes possibility to use "simple treatment" of success
- Together with a BDD quantification this is very powerful
 - The "simple quantification" is enhanced significantly
 - The BDD structure for the success event can be quantified conditional other events
 - The "simple" quantitative will represent a very good quantification

Example, Success Treatment

- The MCS list for sequence 2 is:
 - A –FE1
 - C-FE1
- When quantifying FE1 it is dependent on the other events in the MCS
 - This is considered in the MCS BDD
 - A –B
 - C –(AB)
- It shall be noted that this is only of relevance when dependencies exists between different function events.

Conclusions

- The MCS BDD provides a very fast and powerful tool to remove the main potential problems of a quantification
- It is an excellent choice when high probability events are included (e.g. level 2, seismic analyses etc)
- The use of the MCS BDD will enhance the treatment of the simplified success treatment used in RiskSpectrum PSA
 - Actually, if the amount of MCSs generated in the success events are small (can be completely represented by a MCS list) and homogenous the method will generate an exact BDD of the complete problem.

www.scandpower.com www.riskspectrum.com

Anytime – Anywhere – Under all conditions - Unconditionally