Study on Methodology to Evaluate Risk Importance Based on "Segment"

H. Shimozaki,

T. Uchida, S.miura, M.Yamasita

Safety Analysis and Evaluation Division Japan Nuclear Energy Safety Organization (JNES)

PSAM9, Hong-Kong ,May 18-23,2008

Introduction

Background

- PSA based categorization of SSCs generally has been focused on components.
- ✓ The number of components modeled in PSAs became over 2,000
- Such large number of components leads to somewhat hard to understand the characteristics of systems.

Objective of this study

 Development of the risk metrics to understand characteristics of systems usefully

the methodology to evaluate risk importance of SSCs focusing on "Segment"

"Segment": a group of components identified in terms of component roles for system function

Note : Target system in this study is a fluid system only

The roles of components for system function

Figure 1: Example of a Fluid System

Types of roles of components relevant to fluid systems

Table1: Types of roles of components

"Segment"	Roles of Components
Inlet flow path	To suct the water from the water source of the system to the pump (e.g. inlet section of the system)
Outlet flow path	To inject the water to reactor vessel
	(e.g. outlet section of the system)
Pressurizing fluid	To pressurize the water (e.g. pump)
Heat exchanging	To cool the water (e.g. heat exchanger)
Cleanup	To cleanup the water (e.g. demineralizer)
Preservation of	To preserve the integrity of system function(s)
the system integrity	(e.g. minimum flow line and safety valves)
Testability	To confirm the integrity of system function(s) (e.g. test line).
Diversity	To preserve the diversity of the role of components
Diversity	(e.g. bypass line)

ISSUE to Identification of "Segments"

□ **ISSUE** to be addressed in Identification of "Segments"

Improper identification of "Segments"

⇒Variation of analysts' knowledge and/or experiences

Approach to resolve issue

Establishment of prescriptive rules for identifying the "Segments"

Four Rules for Identification of "Segments"

- a. All fluid systems modeled in PSA shall include the "Segments" of "Outlet flow path" and "Inlet flow path
- b. "Segment" composed of single component maybe allowed.
- c. The boundaries between "Segments" in a system shall be defined at the branching points of pipes or the joint points of components and pipes.
- d. "Segments" shall not be share components with other "Segments

Trial evaluation of risk importance based on "Segments"

Plant type :a typical **BWR5** of Japan Fluid systems modeled in PSA :**16 Systems** Number of total components : approximately **2,500** Risk Importance : **FV(Fussell-Vesely) Importance**

RAW(Risk Achievement Worth) Importance

	in series configuration	in parallel configuration		
FV Importance	$FV(S) = \sum_{i} FV(X_{i})$	$FV(S) = FV(X_i)$		
RAW Importance	$RAW(S) = (\frac{1}{Q})$	-1)FV(S)+1		

the result of identification of "Segment"

Number of total "Segment" : Approximately **125** "Segments"

Identification of "Segment" for a Typical BWR5 of Japan

Role of "Segment"	Inlet flow pat are	Outlet flow pa	Pressurizing fl	Heat exchanging	Cleanup	Preservation of system integrity	Testability	Diversity	
relevant to the main functions of systems						\bigcirc	0		
High Pressure Core Spray System	0	0	0		_	_	0		
Low Pressure Core Spray System	0	0	0			0	0		
Residual Heat Removal System	\bigcirc	0	0	0	—	0		\bigcirc	
Reactor Core Isolation Cooling System		0	0	0		0	0		
Fuel Pool Water Cooling System	\cap	\cap	\cap	\bigcirc	\cap			\bigcirc	
Reactor Water Clean-up Sy Approximately 1/5 of the total "Segments" are relevant to							to		
Make Up Water Condensat the support functions of systems									
High Pressure Core Spray Service Water System*	\bigcirc	0	\circ	\bigcirc	—	\bigcirc			
Residual Heat Removal Service Water System*		0	0	\bigcirc		0	_		
Residual Heat Removal Sea Water System*		0	0		—	_		—	
Emergency Auxiliary Equipment Cooling Water System*		0	0	0		0			
Primary Containment Venting System		0	0		\bigcirc	_	_	0	
Reactor Building Closed Cooling Water System		0	0			0			
Fire Protection System		0	0	_		_		_	

7

Risk Importance of "Segments" in a Typical BWR5

Figure 2: The Evaluation of the Risk Importance of "Segments" in a Typical BWR5

8

High Risk Importance Segments of a Typical BWR5

Table 3: High Risk Importance Segments of a Typical BWR5

No	System	Role of "Segment"			
1	Control Rod Hydraulic System	Pressurizing fluid			
2	Containment Venting System	Inlet flow path			
3	Residual Heat Removal Sea Water System*	Pressurizing fluid			
4	Residual Heat Removal Service Water System*	Pressurizing fluid			
5	Residual Heat Removal Sea Water System*	Inlet flow path			
6	Residual Heat Removal Sea Water System*	Outlet flow path			
7	Emergency Auxiliary Equipment Cooling Water System*	Outlet flow path			
8	Emergency Auxiliary Equipment Cooling Water System*	Inlet flow path			
9	Emergency Auxiliary Equipment Cooling Water System*	Inlet flow path			
10	Residual Heat Removal System	Pressurizing fluid			
11	Emergency Auxiliary Equipment Cooling Water System*	Heat exchanging			
12	Residual Heat Removal Service Water System*	Outlet flow path			
13	Residual Heat Removal System	Heat exchanging			
14	Emergency Auxiliary Equipment Cooling Water System*	Preservation of system integrity			
15	Residual Heat Removal Service Water System*	Preservation of system integrity			

*): Emergency Component Cooling Water Systems (ECCWS)

the characteristics of Risk Importance of "Segments"

Figure 2: The Evaluation of the Risk Importance of "Segments" in a Typical BWR5

SUMMARIES

- (1) We has been developed the methodology to evaluate the risk importance of SSCs focused on "Segment". The eight types of roles of component are defined for identification of "Segment". The prescriptive rules for applications of the types of the roles are established.
- (2) The trial evaluation results showed approximately 125 "Segments" with 15 "Segments" of high risk importance were identified for a typical BWR5. The results also showed the methodology developed in this study could provide the characteristics of the systems modeled in PSA in terms of the risk importance.

Thank you for Your Attention

H. Shimozaki,

Safety Analysis and Evaluation Division Japan Nuclear Energy Safety Organization (JNES)

PSAM9, Hong-Kong ,May 18-23,2008