Technical Considerations for Emergency Preparedness with a Probabilistic Accident Consequence Assessment Model

T. Homma*, M. Kimura*, T. Matsubara**, and J. Ishikawa* *Japan Atomic Energy Agency **Visible Information Center, Inc.

PSAM9 Hong Kong, May 18 - 23, 2008

Background

- IAEA Safety Requirements (GS-R-2, 2002) Safety Guide (GS-G-2.1, 2007)
- Management approach
 - -Practical goals (8 goals)
 - ✓ Prevent the occurrence of deterministic health effects
 - Prevent, to the extent practicable, the occurrence of stochastic health effects
 - -Intervention principles
 - -Efficient and cost-effective system
- ICRP (Publ.103, 2007)
 - -Optimization of overall strategy
- NSC's Guideline on emergency preparedness
 - -No practical guidance for protective measure strategy

Objectives

- Introduce a metabolic model of iodine to accurately evaluate the effect of reducing thyroid dose by intake of stable iodine
- Perform a risk informed analysis of protective measures, in order to formulate the technical basis for the effective strategy of protective measures
 - Combination of sheltering and evacuation with administration of stable iodine

Accident Consequence Model

OSCAAR (Off-Site Consequence Analysis of Atmospheric Releases of radionuclides)

Models of OSCAAR

Atmospheric Dispersion and Deposition

- Multi-puff trajectory model with two scale wind fields
- Take account of temporal changes in weather conditions and variable long duration releases

Meteorological Sampling

- Stratified sampling scheme appropriate for use with the trajectory dispersion model was designed and developed
- Select a representative sample of weather sequences for analysis (100-200 sequences)

Exposure Pathways

- Realistic estimates for all possible exposure pathways with protective measures with simple models such as sheltering, evacuation, relocation and food ban
 - Shielding and filtering factors for sheltering
 - Radial evacuation

Metabolic Model of Iodine in Man

$$\boldsymbol{r}_2 = \boldsymbol{s}_2 \left(\boldsymbol{Y}_2^{\boldsymbol{r}} / \boldsymbol{Y}_2^{\boldsymbol{s}} \right)$$

 r_2, s_2 : the rate of uptake of radioactive and stable iodine by the thyroid

Reduction in the committed thyroid dose to man (for adult, 100mg)

Source Term Development

- •10⁻¹ Iodine release fraction : Energetic events, Overpressure, ISLOCA
- •10⁻⁵~10⁻⁴

: Containment vent

•10⁻⁷~10⁻⁸

: Termination

Source Term Development

Source terms and PM strategy

Three source term scenarios

Release scenario	Release time (hr after scram)	Duration of release (h)	Release fraction of iodine (%)
Large early release	3	1	7.9
Large late release	27	7	3.3
Control release	12	22	0.09

Strategies of protective measures

- Large early release: precautionary evacuation with stable iodine intake
- Large late releases: evacuation and sheltering with stable iodine intake
- Control releases: sheltering with stable iodine intake

Site data

 A reference site is assumed to be located at a coastal area facing the Pacific Ocean (JAEA site at Tokai)

Steps for Consequence Evaluation

Calculation of dose from each pathway and time-dependent iodine concentrations in air at receptor points using OSCAAR

•248 weather sequences selected by a stratified sampling method

Calculation of dose reduction effects by various combinations of protective measures

- Intervention levels for implementing each protective measure Sheltering: 10 mSv, Evacuation: 50 mSv(effective dose) Administration of stable iodine : 100 mSv (thyroid equivalent dose)
- Inhalation dose due to iodine intake based on ¹³¹I contents in thyroid using a metabolic model by Johnson r_n

Calculation of maximum dose at each distance from the site and its probability of weather sequence

- Probability of exceeding a specific dose level
- Dose at each distance from the site at a specific cumulative probability of weather sequences

each weather

sequence

Large Early Release

- Even for large early release without protective measures, mortality would be very unlikely to occur beyond about 5 km.
- Early stable iodine intake can be very effective to reduce the thyroid dose for the people close to the site even the delay of evacuation.

Large Late Release

> For large late release, evacuation area is unlikely to occur beyond 10 - 20 km.

For the sheltering area, stable iodine intake can be very effective to reduce the thyroid dose.

Control Release

- For control release, evacuation area is unlikely to occur beyond a few kilometers and sheltering area is unlikely to occur beyond about 10 km.
- For very severe weather conditions, sheltering with stable iodine intake is needed only close to the site.

Conclusions

- The metabolic model of iodine was successfully introduced with the probabilistic accident consequence model to accurately evaluate the effect of reducing thyroid dose by the intake of stable iodine.
- For the representative source terms defined by the level 2 PSA, the preliminary analysis has been performed using the probabilistic accident consequence model to evaluate the effectiveness of protective action strategy involving a combination of evacuation, sheltering and administration of stable iodine.
- The study indicated that pre-distribution of stable iodine might be considered for the people close to the site in planning.
- The study also indicated that administration of stable iodine should be considered as a supplement to sheltering at greater distances from the site in planning.
- The results of this study will be expected to form the basis for future technical guidance for protective action strategy.

