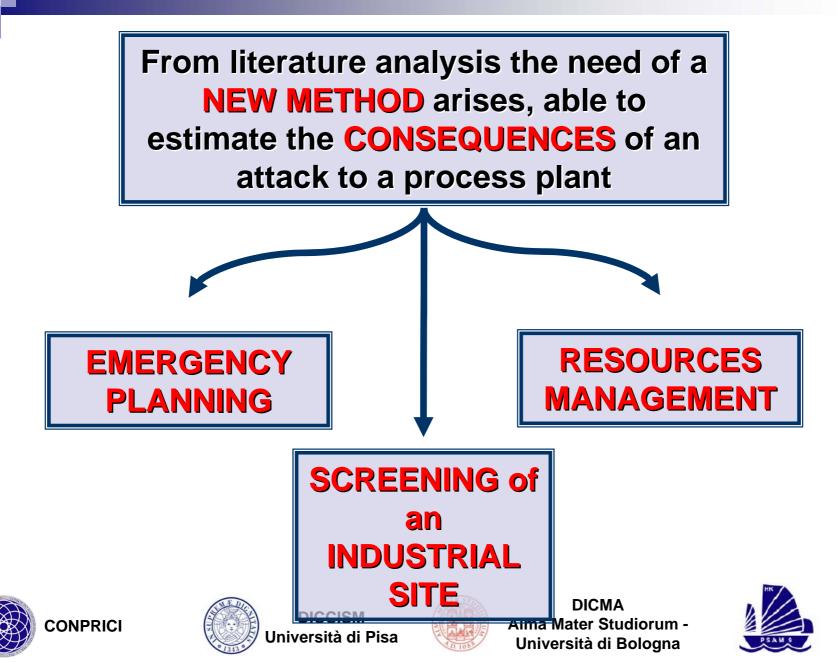


Ninth International Probabilistic Safety Assessment and Management Conference An ISAPSAM Conference 18-23 May 2008 Hong Kong, China

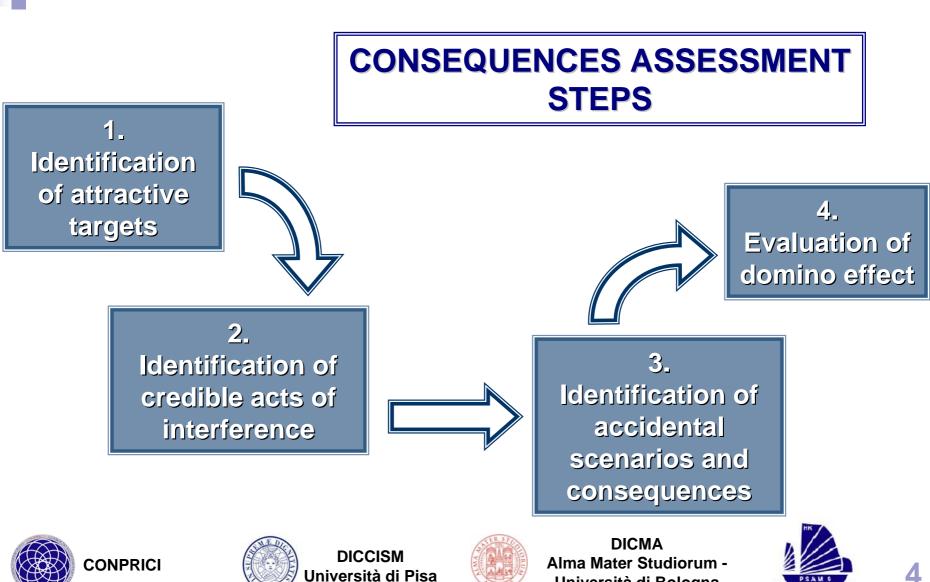
HAZARD ASSESSMENT OF MAJOR ACCIDENTS TRIGGERED BY INTENTIONAL ACTS OF INTERFERENCE

Martina Sabatini^{a,c}, Severino Zanelli^{a,c}, Valerio Cozzani^{b,c}

DICCISM Università di Pisa

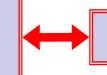

DICMA Alma Mater Studiorum – Università di Bologna

CONPRICI Consorzio Interuniversitario Prevenzione e Protezione dai Rischi Chimico-Indusriali An increasing attention of the risk analysts in the last years was devoted to the evaluation of the risk brought by <u>external sources</u>, as natural events (floodings, earthquakes) or <u>intentional acts of interference</u>, in sites where relevant quantities of dangerous substances are handled or stored



INTRODUCTION (2)

SCHEME of the PROCEDURE

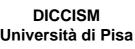

Università di Bologna

TYPE OF INTERFERENCE	REQUIRED LEVEL OF INFORMATION	EXPECTED RELEASE RATE (ATMOSP. EQ.)	EXPECTED RELEASE RATE (PRESSUR. EQ.)
DELIBERATE MISOPERATION	С	R2	R1
INTERFERENCE BY SIMPLE MEANS	С	R2	R1
INTERFERENCE BY MAJOR AIDS	С	R3	R2
ARSON BY SIMPLE MEANS	С	R3	R2
ARSON BY INCENDIARY DEVICES	В	R4	R3
SHOOTING (MINOR)	A	R1	R1
SHOOTING (MAJOR)	A	R4	R4
EXPLOSIVES	В	R4	R4
VEHICLE IMPACT	В	R3	R3
PLANE IMPACT	Α	R4	R4

1. IDENTIFICATION OF ATTRACTIVE TARGETS (1)

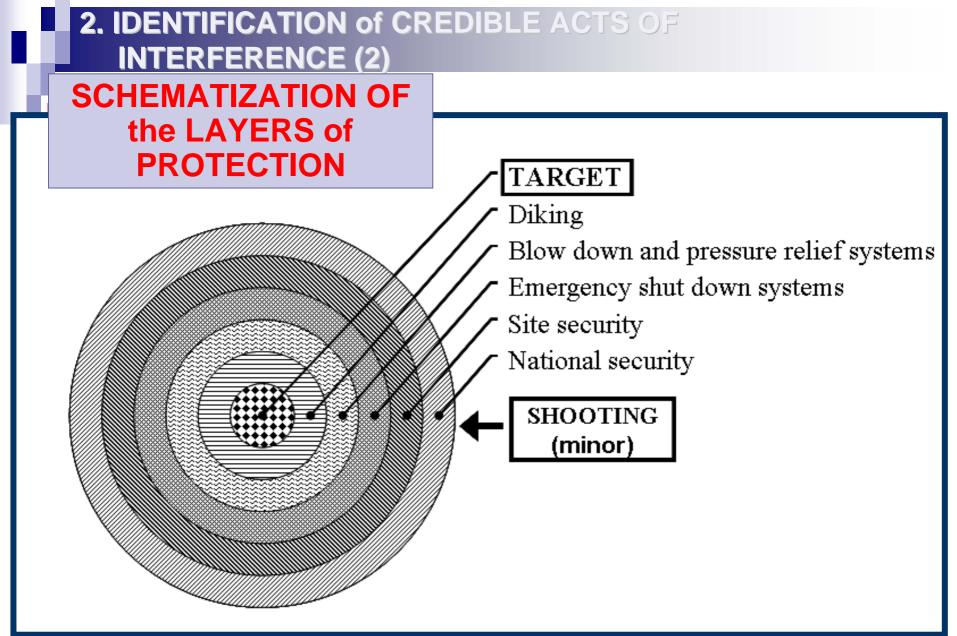
THE MOST SEVERE POSSIBLE CONSEQUENCES are aimed to be achieved by the executors of the attack

ATTRACTIVENESS (likeness of the attack)



DAMAGE DISTANCES

TYPE OF HAZARD (flammable, toxic or both) PHYSICAL CONDITIONS (post-release behaviour: adiabatic expansion, pool vaporization, etc.) > AMOUNT OF SUBSTANCE IN THE UNIT (hold up: devices having the same volumes may contain different quar **ATTRACTIVENESS RANKING** from 1 to 4 DICMA


1. IDENTIFICATION OF ATTRACTIVE TARGETS (2)

ATTRACTIVENESS RANKING TABLE

	LIQUEFIED GAS STORED UNDER PRESSURE	FLUIDS WITH LOW VAPOR PRESSURE STORED IN LIQUID PHASE	GAS	CRYOGENIC STORAGE	LIQUID	
TANKS	4	3	3	2	1	
LARGE DIAMETER PIPELINES	4	3	2	2	1	
COLUMN-TYPE EQUIPMENTS	3	2	2	2	1	
REACTORS / HEAT EXCHANGERS	3	2	1	1	1	
	Univ	DICCISM versità di Pisa	DICM Alma Mater S Università d	Studiorum -		

2. IDENTIFICATION of CREDIBLE ACTS OF

ACT of INTERFERENCE	DAMAGE VECTOR	VULNERABILITY MODELS	
Deliberate Misoperation, Interference using Simple or Major Aids	EXTERNAL ACTION	Availability on demand for protection and mitigation systems	
Arson using Simple or Incendiary Devices	RADIATION	Equipment vulnerability models and reliability models	
Shooting (1) o (2)	MISSILES IMPACT	Equipment vulnerability models and reliability models	
Explosives	OVERPRESSURE	Equipment vulnerability models and reliability models	
Vehicle or Plane Accident	VEHICLE IMPACT	Equipment vulnerability models	
CONPRICI		Mater Studiorum - ersità di Bologna 8	

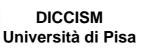
DICCISM Università di Pisa

3. IDENTIFICATION OF ACCIDENTAL SCENARIOS AND CONSEQUENCES EVALUATION

From the previous phases <u>RELEASE RATES for each ACT OF INTERFERENCE</u> can be obtained

TRADITIONAL SAFETY ANALYSIS METHODS

may be used to assess the consequences of loss of containment



SPECIFIC ACTS OF INTERFERENCE (Arson or Explosives) may affect the probabilities of the scenarios, since **IGNITION** is largely more probable than in usual conditions

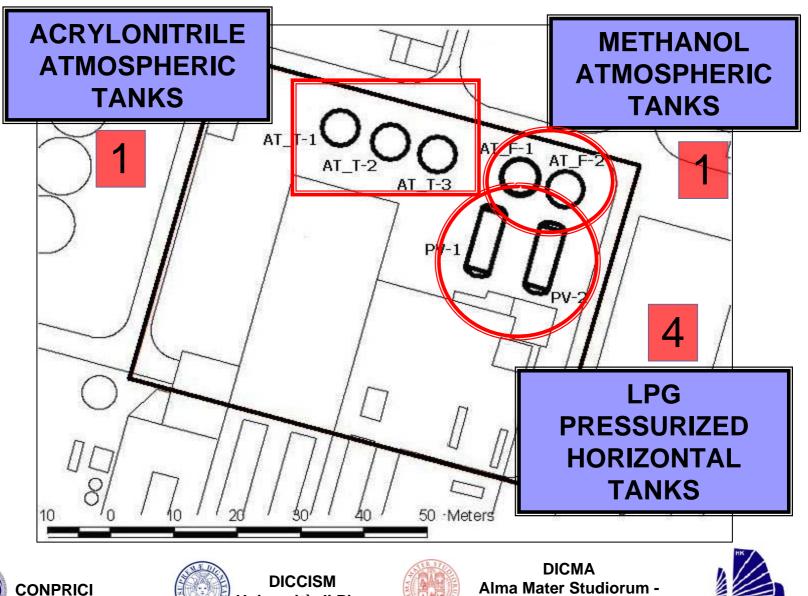
4. EVALUATION of DOMINO EFFECT

PROVEN CORRELATIONS for the EVALUATION OF PHYSICAL EFFECTS (Yellow Book ones)

PHYSICAL EFFECTS on PEOPLE (proper thresholds provided by Seveso III) PHYSICAL EFFECTS on DEVICES

External attacks may trigger <u>ESCALATION EVENTS</u>

Conventional escalation thresholds (defined by literature) may be successfully used



DICCISM Università di Pisa

CASE STUDY

Università di Bologna

Università di Pisa

	THE OONE					
ACT of INTERFERENCE	ITEM	SCENARIO	RATE of RELEASE		DAMAGE DISTANCE (m)	
DELIBERATE MISOPERATION	PV-1/2	VCE	R2		354	
INTERFERENCE USING SIMPLE AIDS	PV-1/2	VCE	R2		354	
INTERFERENCE USING MAJOR AIDS	PV-1/2	VCE	R2		354	
ARSON USING SIMPLE MEANS	PV-1/2	Jet fire	R2 (PSV)		183	
ARSON USING INCENDIARY DEVICES	PV-1/2	Jet fire	R2 (PSV)		183	
SHOOTING (MINOR)	AT_T-1/2/3	Toxic Dispersion	R1		118	
SHOOTING (MAJOR)	PV-1/2	Jet fire	R3		249	
EXPLOSIVES	PV-1/2	VCE	R4		2318	
VEHICLE IMPACT	(Unlikely)					
PLANE IMPACT	PV-1/2	VCE	R4		2318	
Università di Pisa Università di Bologna						

CONCLUSIONS

A method to evaluate consequences of an external attack was developed

Expected release rates, likeliness of the success of the attack and impact distances (also considering domino effect) may be estimated

A ranking of the "attractiveness" of the equipment may be performed

Ninth International Probabilistic Safety Assessment and Management Conference An ISAPSAM Conference 18-23 May 2008 Hong Kong, China

HAZARD ASSESSMENT OF MAJOR ACCIDENTS TRIGGERED BY INTENTIONAL ACTS OF INTERFERENCE

THANK YOU FOR YOUR ATTENTION