#### Quantifying the Unimaginable Human Performance Limiting Values



Barry Kirwan, Eurocontrol Ian Umbers (BEGL), Jim Edmunds (CRA), Huw Gibson (University of Birmingham)

# Overview



- The Problem Area
- HPLVs
- Guidance

### Scenario

- Nuclear Power Plant
- Loss of feedwater
- Operating team fail to recognise need to commission boiler feed for post-trip cooling (1.5hrs after trip)
- Continues to fail for further 8 hrs
- What is the failure probability?
- What is the failure mechanism, anyway?



#### Human Error Probabilities in Cutsets

- Operator 1 fails to do it right
- Operator 2 fails to check operator 1
- Supervisor fails to detect error
- Operator 3 fails to remain a fails
- Operator 4 fails to co
- Supervisor fails to ov





# The Problem – human performance limits



Human Performance Limiting Values (HPLCs) cutset 'cut-off' values

- Circa 1990, BNFL THORP Safety Case Methodology
- Reviewed human error data  $< 10^{-5}$
- Concerned over optimism
- 3 HPLVs:
  - 10<sup>-4</sup> Single operator
     10<sup>-5</sup> Grand and the plant is transformed and the strandors of the plant is transformed and the strandors of the plant is the strandors of t



#### Utility of HPLVs: BNFL experience

- Checked optimism
- Straightforward for assessors
- BNFL interpretation of NII SAPs discontinued use of 10<sup>-6</sup>
- HPLV Sheets & Review by HF Team
- Highlight issues to internal Safety Committee
- Use of 'Non-credible' argument in some cases
- If have data (e.g. <10<sup>-5</sup>) then use data
- Approach allows focus of safety effort where needed

# UK Nuclear Industry Workshop on HPLVs (2007)



British Energy; British Nuclear Fuels; Atomic Weapons Research Establishment; Nuclear Installations Inspectorate NARA Project Team

#### Usage of HPLVs in UK

#### <u>Reprocessing</u>

- Less diagnosis; many small fault trees; assessors have HF training; HPLV process clear to assessors
- Some events not modelled if HD or CD
- Assessors model and choose value of HPLV in (small) FT
- Justification sheets (HPLV)
- HF Review if 10<sup>-5</sup> consider task analysis; determine impact on risk target; consider pessimisms; identify improvements (ALARP)
- Can designate 'non-credible'
  argument

#### • <u>Defence</u>

- [No diagnosis; very many very short fault sequences; criticality]; long FT under an OR gate; focus on initiating events
- Quantify using THERP or historical data
- Consider direct dependence
  (THERP)
- If < 10<sup>-5</sup> then apply HPLV cutoff 10<sup>-5</sup> for group or 10<sup>-4</sup> for single person
- If risk sensitive try qualitative approach / ALARP

#### Process

#### <u>Gas-Cooled Reactors</u>

- Initiating events give auto trips (high level of redundancy): focus on posttrip – need operator support after 1-2 hrs; massive fault trees; some latent failures; SRV lift is major milestone
- Identify required actions focus on key actions (do task analysis)
- 2 periods initial and long timeframe: assumptions of different shifts, continued need for action
- Raise all HEPs to 0.9 and review cutsets

#### • <u>PWR</u>

- Some long timeframe actions assumption about shift changes; PWR has a shutdown PSA where more dependent on operator diagnosis/action
- No HPLV usage
- Latent errors are in do not see need for dependency across latent/active boundary
- THERP & Direct dependence using modified formula – slightly less pessimistic
- Raise all HEPs to 0.9 (prioritisation analysis)

# Workshop Approach

- Scenarios considered by all parties
- Usage & non-usage of HPLVs discussed
- Frank & honest discussion, regulator present
- Differences in plant type, and assessment approach has an effect
- Idealised process evolved after the workshop



### Scenario



- Ops fail to recognise need to secure continuous boiler feed for post-trip cooling within 2.5 hrs of reactor trip
- Fail to respond to a break in boiler feed and issue instructions to re-instate boiler feed within *a further 12.5 hrs*
- Various alarms; SRV lifts 4.5 hrs into scenario; change of shift; Symptom-Based Emergency Response Guidance

### Scenario 3 - Glove-box Scenario

- Build up of powder fail to detect in one month
- Process related check (2)
- Weekly check (3)
- 2 different people
- Same check
- Administrative control
- HPLV 10<sup>-4</sup>

# Principles



- An HPLV is not a Human Error Probability (HEP), and is only used to bound a cutset, preventing optimism
- Direct dependence should be modelled before HPLV application HPLVs should not be a short-cut for modelling or understanding
- An HPLV acts as a 'flag' to assessors that a deeper look needs to be taken to determine risk significance
- Indiscriminate use of HPLVs distorts the risk picture
- A utility's Risk Management processes should include dependence countermeasures
- HPLVs are not a solution to errors of commission separate searches for EOCs (latent and post-trip) should occur
- Whatever the approach taken for dependence, it needs to be transparent and defensible
- The lowest credible HPLV appears to be 10<sup>-6</sup>
- Positive Safety Culture must also be assured separately



# Guidance

- Model direct dependence, including cognitive dependencies
- Apply HPLVs as appropriate
- Consider impact on risk target
- If risk sensitive:
  - If single personnel consider centralising / adding personnel
  - If new plant, consider design change to improve humansystem reliance balance
  - Work on 'optimising factors', countering 'mechanisms'
  - Deem 'non-credible' go to peer review
  - Use 10<sup>-6</sup> if long timescale
  - Make As Low As Reasonably Practicable (ALARP) case
  - Re-design task

### Conclusions



- Two of the four companies make regular use for HPLVs most of the time they don't matter; but occasionally they help assessors see 'the wood for the trees', and they know they have to dig deeper
- In new plant, the ideal would be to have a better balance between technology and human, such that there was less need to resort to HPLVs. However, outage PSAs etc. may remain a different story
- As ever, the numbers are less important than the search for vulnerabilities and the attempts to defend against them, and maintaining transparency throughout this process. HPLVs are 'blunt' but clear.

#### **Closing statements (from the Workshop)**

- Balance between human and hardware reliability
- HPLVs covering 'residual' (epistemic) uncertainty
- Regulator no expectation for licensees to use HPLVs but can see that direct dependence will not capture everything, and you can get excessively optimistic cutsets – there is a case for using HPLVs – though not as a substitute of direct dependence modelling

# Questions?



# INDIRECT DEPENDENCE

- Equivalent of CMF or Beta factors
- Allowing for unforeseen dependencies interactions less understood
- Incident & accident experience tells us we are not so reliable
- Accounting for (partially) errors of commission
- Limits of human performance
- Limits of prediction

#### **Epistemic Uncertainty**





### **HPLV** Issues

- DIRECT DEPENDENCE
- Clear mechanism of dependence
- Swain/HSE factors apply same people, task, timeframe, etc.
- Use of THERP adjustment factors, conditional probabilities, judgement, etc.







