Approach to Quantification of Uncertainties in the Risk of Severe Accidents at NPP Neckarwestheim Unit 1 (GKN I) and the Risk Impact of Severe Accident Management Measures

<u>A. Strohm</u>, L. Ehlkes, W. Schwarz (EnBW Kernkraft GmbH) M. Khatib-Rahbar, M. Zavisca, Z. Yuan, A. Krall, A. Lyubarskiy (ERI) D. Rittig (ISaR) W. Werner (SAC)

Dr. Andreas Strohm Kernkraftwerk Neckarwestheim a.strohm@kk.enbw.com

PSAM9, Hong Kong / 2008-05-23

EnBW

Energie braucht Impulse

NPP Neckarwestheim Unit 1 (GKN I)

equipped with

– ᢄո᠑Ѡ

Level-2 PSA of NPP GKN I with Focus on Uncertainties

EnBW

Overview

- 1. Fundamentals for NPP PSA in Germany
- 2. Characteristics of PSA Levels
- 3. Objectives, Scope, and Performance
- 4. Methodology
- 5. Results
 - Release Categories
 - Source Terms
 - Integral Risk of Release Activity
- 6. Insights and Conclusions

1. Fundamentals for NPP PSA in Germany

Fundamentals for NPP PSA in Germany

<mark>- ԸոՑ</mark>Ս

Specification Level		Essential Content	
Atomic Law (Amendment) (27th April 2002)		 Periodic safety review (PSR) Mandatory dates for all NPP 10-year-periodicity 	
 Official Guidelines > Principles of PSR > Deterministic Analyses > Safety Status (1) > Physical Protection 		Scope, presentation/evaluation of results	
> PSA Guideline	(2)	 Full-power Level-1 PSA internal initiators internal and external hazards Off-power Level-1 PSA Full-power Level-2 PSA 	Part 1
Subordinated Documents (1) Generic Safety Principles (2) PSA-Methods, Data		Details for technical performance	German PSA Fundamental

2. Characteristics of PSA Levels

Characteristics of the PSA Levels

ยายพ

PSA Level	Analyses Concerns	Final Results	Uncertainties
1	<i>Plant</i> : components, operators	core damage frequency	reliability data of components and operator actions
2	<i>Plant</i> : severe accident phenomena	frequency of containment failure due to core damage amount of release of radionuclides	limited knowledge of severe accident phenomena
3	<i>Environment</i> : radionuclide transport, impact	biological and economical consequences of environmental radionuclide release	missing knowledge of radionuclide transport behaviour and biological effectiveness

"Risk"

3. Objectives and Scope

Objectives and Scope

Objectives:

- > Perform a level-2 PSA consistent with:
 - (a) international practices forming the current state-of-the-art
 - (b) the specifications of the German PSA guideline
- > Assess the efficiency of plant-internal, post-core-damage accident management measures/systems ("mitigative AM")
- > Identify other potentially efficient AM measures

Scope

- Classical level-2 PSA with level-1/level-2 interface
 - frequency of release categories
 - amount of radionuclide release (source terms)
- Level-2 extension to evaluate AM-efficiency

Integral risk of release activity in the environment

4. Methodology

10 2008-05-23 PSAM9, Hong Kong

Starting Point: core damage (CD) frequency distribution of level-1 PSA

1. Development of a structured level-1/level-2 interface

- > including all 247 level-1 CD-states without cut-off criteria
- binning of CD-states to 60 plant damage states
 by 9 binning criteria
- thereby: complete separation of the diverse uncertainties of level-1 and level-2 PSA

Part 4 Methodology

Starting Point: core damage (CD) frequency distribution of level-1+ PSA

1. Development of a structured level-1+/level-2 interface

2. Integral deterministic severe accident analyses

for 12 relevant PDS, representing sequences and scenarios
 (a) that comprise a high percentage of total CD-frequency
 (b) that are likely to be risk-significant

> with MELCOR 1.8.5

defining initial and boundary conditions for analyses
 of particular severe accident phenomenological issues

Part 4 Methodology

Starting Point: core damage (CD) frequency distribution of level-1+ PSA

- 1. Development of a structured level-1+/level-2 interface
- 2. Integral deterministic severe accident analyses
- 3. Containment-challenging phenomena uncertainties: identification, quantification, and propagation (major element of the GKN I level-2 PSA)
 - > using initial and boundary conditions provided by MELCOR
 - > on plant-specific basis
 - > to estimate conditional probabilities and uncertainties for severe accident issues

Part 4 Methodology

Examples: Conditional Probabilities and Uncertainties Associated with Relevant Containment Challenges

			Percentile		
Challenge type/ Condition	Distr.	0 %	50 %	100 %	
Creep-rupture of hot leg or pressurizer surge-line nozzles / high or medium pressure	β	0.90	0.95	0.99	
In-vessel core damage arrest long term by water flooding / water injection	log β	0.01	0.10	0.50	
Failure to successfully initiate filtered containment venting / requirement to prevent containment failure	log β	1.40·10 ⁻³	2.93·10 ⁻³	6.15·10 ⁻³	
Filtered containment venting system (FCVS) failure due to combustion / FCVS is actuated	β	0	0.045	0.14	

Starting Point: core damage (CD) frequency distribution of level-1+ PSA

- 1. Development of a structured level-1+/level-2 interface
- 2. Integral deterministic severe accident analyses
- 3. Containment-challenging phenomena uncertainties
- 4. Probabilistic severe-accident analyses
 - integrating results by accident progression event tree (APET)
 (e.g., MELCOR calculations, AM measures, system information)
 - > given a PDS, APET computes conditional containment failure probability by various modes using EVNTRE
 - > binning of APET end states into 11 release categories

Part 4 Methodology

APET Release Categories

Release Category	Containment Failure Mode	Description of Release Path				
RC-A	LOCA outside containment	Large containment bypass \rightarrow Annulus \rightarrow Unfiltered release				
RC-B	Uncovered SGTR	Release via uncovered steam generator tubes				
RC-C	Early containment rupture	Containment failure at or before vessel breach \rightarrow Annulus \rightarrow Unfiltered release				
RC-D	Containment isolation failure	Containment failure before core damage → Annulus → Unfiltered release				
RC-E	Covered SGTR	Release via covered steam generator tubes				
RC-F	Sump line failure	Containment failure after vessel breach \rightarrow Annulus \rightarrow Unfiltered release				
RC-G	Late containment rupture	Containment failure long after vessel breach → Annulus → Unfiltered release				
RC-H	Basemat melt-through	Release via penetration of concrete basemat				
RC-I	Unfiltered containment venting	Containment venting with loss of filtration capability				
RC-J	Filtered containment venting	Containment venting to stack with filtration				
RC-K	No containment failure	Small containment leakage → Annulus → Filtered or unfiltered release				

LOCA Loss of Coolant Accident SGTR Steam Generator Tube Rupture

Starting Point: core damage (CD) frequency distribution of level-1+ PSA

- 1. Development of a structured level-1+/level-2 interface
- 2. Integral deterministic severe accident analyses
- 3. Containment-challenging phenomena uncertainties
- 4. Probabilistic severe-accident analyses

5. Source term analyses for release categories

- quantifies released fractions of initial radiological core inventory for 10 radiological groups
- requires transport, deposition, and radiological release predictions associated with significant uncertainties
- requires multitude of random samples for uncertainty analyses with computationally simplified parametric code^{*} (ERPRA-ST)

Part 4 Methodology

ยายิเม

Starting Point: core damage (CD) frequency distribution of level-1+ PSA

- 1. Development of a structured level-1+/level-2 interface
- 2. Integral deterministic severe accident analyses
- 3. Containment-challenging phenomena uncertainties
- 4. Probabilistic severe-accident analyses
- 5. Source term analyses for release categories
- 6. Extension by integral risk approach
 - > confined to uncertainty range of level- 2 PSA
 - > using integral release activity of 60 radionuclides
 - > interpreted as activity in immediate plant vicinity

Part 4 Methodology

– ᢄո᠑Ѡ

Quantification of integral <u>R</u>isk of release <u>A</u>ctivity R_A

> product of

- release category frequency
- activity of released fraction of initial radiological core inventory

> integrated over all release categories

$$R_{A} = \sum_{i} \sum_{j} \sum_{i} [f_{i} \cdot P(i|d)] \cdot P(d|s) \cdot A(s|a)$$

- *f*_i: frequency of initiating event "i" [per year]
- *P*(i|d) : conditional probability that initiating event "i" leads to PDS "d"
- P(d|s) : conditional probability that PDS "d" will lead to source term "s"
- A(s|a) : mean value of released activity a [per year],
given the occurrence of source term "s"Part 4
Methodology

5. Results

Release Categories: Relative Proportions at total PDS Frequency

Part 5 **Results**

EnBW

PSAM9, Hong Kong

Release Categories:

23

Relative Contribution to Integral Risk (w/o Noble Gases)

6. Insights and Conclusions

Insights

-Տոթր

Plant-related

Total core damage frequency of GKN I comparable to those of modern operating plants of similar design

> Overall risk of activity in vicinity of the plant very low

- > Existing equipment and provisions
 - reduce efficiently likelihood of severe accidents
 - mitigate efficiency activity release of severe accidents
- > Results are numerically robust

General

Improvements of level-1 and level-2 PSA results does not necessarily imply a reduction of integral risk of activity Part 6 Insights

Conclusions

-Տոցի

Potential provisions (resulting from sensitivity analyses)

- > Additional water injection into damaged steam generator aiming at increasing the aerosol decontamination factor
- Improvements in procedures and training ensuring the high reliability of filtered containment venting system actuation

Review of PSA Level-1 modelling

 Effectiveness of containment isolation under annulus flooding conditions (service-water-line leak)

> Part 6 Conclusions

The End

28 2008-05-23 PSAM9, Hong Kong

Starting Point: core damage (CD) frequency distribution of level-1+ PSA

- 1. Development of a structured level-1+/level-2 interface
- 2. Integral deterministic severe accident analyses
- 3. Containment-challenging phenomena uncertainties
- 4. Probabilistic severe-accident analyses
- 5. Source term analyses for release categories
- 6. Extension by integral risk approach
- 7. Importance and sensitivity analyses
 - importance analyses to estimate uncertainty correlations between PSA input variables and integral risk
 - > sensitivity analyses to assess the risk impact of existing and potential additional mitigative AM

Part 4 Methodology

ยายิเม

Starting Point: core damage (CD) frequency distribution of level-1+ PSA

- 1. Development of a structured level-1+/level-2 interface
- 2. Integral deterministic severe accident analyses
- 3. Containment-challenging phenomena uncertainties
- 4. Probabilistic severe-accident analyses
- 5. Source term analyses for release categories
- 6. Extension by integral risk approach

Final Result:integral risk of activity of releasein immediate plant vicinity

Part 4 Methodology

Selected Phenomena Analyses: Containment Challenge due to Severe Accidents

Example: RPV-Failure

- > locally and due to temperature-induced creep rupture
- > large-area failure with low probability

