A Stochastic Modelling Approach for Simultaneous Demands in Domestic Water Supply Systems

L.T. Wong and K.W. Mui

Department of Building Services Engineering The Hong Kong Polytechnic University Hong Kong, China

PSAM9 2008

Plumbing systems in high-rise buildings: Demand characteristics (1)

Plumbing systems in high-rise buildings: Demand characteristics (2)

- Low demand probability at each of the installed appliances
- Relatively steady flow rate at the appliance
- Design is not economically justified for the possible maximum simultaneous demands
- Current Practice: design can only address the simultaneous demand most of the time
- Fixture unit approach

Current practice (1)

- Characterize an appliance: flow rate q_a , discharge probability p = t/T (average time fraction)
- Assume service level, 4 persons or 8 persons per washroom
- Assume per-person utilization rate in the peak hours
- Assume constant flow rate
- Assume independent use of each appliance
- Assume binominal operation, (on-off mode)

Current practice (2)

•Evaluate for the density function of the number N of reference appliances in operations simultaneously, for M total installed reference appliances M_1

$$_{M} p_{N} = \frac{M!}{N!(M-N)!} p^{N} (1-p)^{M-N}$$

 $\lambda \Lambda$

* Solve for N at λ

$$\lambda = p(N+1) + p(N+2) + \dots + p(M-1) + p(M) = \sum_{i=N+1}^{M} p_i \quad ; N < M$$

Current practice (3)

- Using Sterling's formula and expanding in descending powers of M gives:
- $\log p = \log M! + (Mp+x)\log p + [(1-p)M x]\log(1-p) \log(Mp+x)! \log[(1-p)M x]!$ $= \frac{1}{2}\log 2\pi p(1-p)M \frac{1}{2M} \left\{ \frac{x^2}{p(1-p)} + \frac{x(1-2p)}{p(1-p)} \right\} \cdots$
 - ... solution: N = Mp + k_λ √2Mp(1-p)
 Currently acceptable failure rate is 1%, k_λ = 1.8

Current practice (4)

Assign an equivalent fixture unit for any other appliance characterized by q and p, at an reference hypothetical flow rate of 10 L/s

Current practice (5): re-consideration for domestic washroom

- Characterize an appliance: flow rate q_a, discharge probability p = t/T (average time fraction)
- Assume constant flow rate
- Assume independent use of each appliance
- The demand is occupant load dependent, usage rate dependent

A proposed stochastic approach

- Taking the simultaneous usage patterns in some high-rise residential buildings into account, this study investigated the **probable maximum demands** of some water supply systems for domestic washrooms in high-rise residential buildings in Hong Kong using a **time-flow rate approach**.
- Recent field measurements \rightarrow usage patterns
 - Monte Carlo simulations
- \rightarrow water supply flow rates
- \rightarrow demand pattern
- →Probable maximum simultaneous demands

Time-flow rate approach (1)

Time-flow rate approach (2)

number of domestic washrooms

the plant probable maximum simultaneous demand (L/s) $q_d \approx \sum_{j=1}^{N_j} q_j$

water demand of each washroom j (L/s)

Time-flow rate approach (3)

number of users served by the appliance i

number of *per capita* hourly operations

the transient domestic washroom demand patterns within certain peak periods can be determined using Monte Carlo simulations, taking variations of N_p , q_i , τ_i and n_i into account,

Step 1:
$$N_p \in \widetilde{N}_p; q_i \in \widetilde{q}_i; \tau_i \in \widetilde{\tau}_i; n_i \in \widetilde{n}_i = \widetilde{n}_i(t)$$

Time-flow rate approach (4): cumulative discrete probability density function for flow rate at $t \in \tau_p$

An illustrative example (1)

- A survey of water demand patterns in **596** domestic washrooms referred
- average number of users per washroom = 4.2 (head count, or denoted as 'hd').

Figure 1: Diurnal demand patterns of some domestic appliances

An illustrative example (2): Typical demand patterns of domestic washroom appliances

Survey parameter	Normal distribution		Geometric distribution	
	AM (ASD)	Goodness-of-fit p-value	GM (GSD)	Goodness-of-fit p-value
Water closet (WC)				
Cistern volume V _{wc} (L)	9.2 (1.1)	>0.01	9.3 (1.1)	<0.0001
Operating time τ_{wc} (s)	101 (55)	< 0.0001	85 (1.9)	≤0.0001
Washbasin				
Flow rate q_{wb} (L/s)	0.17 (0.07)	<0.0001	0.15 (1.6)	≥0.02
Operating time τ_{wb} (s)	16.0 (18.6)	<0.0001	10.7 (2.4)	≥0.002
Shower				
Flow rate q_{sh} (L/s)	0.31 (0.07)	< 0.02	0.31 (1.2)	≥0.89
Operating time τ_{sh} (min)	13.7 (7.5)	≥0.0001	11.3 (2.0)	<0.0001

An illustrative example (3): Input parameters

- demand for all appliances between midnight and 5:00 a.m. was very low;
- peak '*per capita*' hourly demands occurred in the evening:
 WC:
 - 6:00 p.m. to 9:00 p.m. average 0.59/hd/h (ASD=0.20/hd/h)
 - maximum 1.25/hd/h;

- Washbasin:
 - 8:30 p.m. average 0.59/hd/h (ASD=0.21/hd/h)
 - maximum 1.25/hd/h;

- Shower:
 - 7:00 p.m.

average 0.18/hd/h (ASD=0.09/hd/h)
maximum 0.29/hd/h.

An illustrative example (4): Input parameters

- For simulations, e.g. a washroom:
- For appliances i=3 (i.e. a WC, a washbasin and a shower)
- assuming their respective peak demand profiles with an average occupant load per appliance of 4.2 hd (ASD=1.0 hd)

An illustrative example (5): Input parameters

- Based on the time-flow rate approach, the design flow rates q_d (L/s) due to a number of domestic washrooms were evaluated via Monte Carlo simulations for two cases:
 - (1) none of the three appliances in a washroom would be used at the same time;
 - (2) WC cistern and washbasin in a washroom would be used at the same time.
- Employing the arbitrarily selected profiles from 2000 simulated washrooms, together with the expected appliance profiles
 - expected flow rate $q_i = \langle \tilde{q}_i \rangle$
 - expected operating time $\tau_i = \langle \tilde{\tau}_i \rangle$
 - expected occupant load $N_p = \langle \widetilde{N}_p \rangle$
 - during the recorded peak period $n_i = \tilde{n}_i(t)_{\max(N_{o_i})}$

Simulation results (1)

No. of washrooms N_i

Concluding remarks (1)

Presently, hypothetical simultaneous usage patterns of domestic washroom appliances are used in the design of a water supply system which might not optimize the estimated demand for water supply system in some high-rise residential buildings of Hong Kong.

Concluding remarks (2)

This study proposed a stochastic model of water demands in domestic washrooms for some high-rise residential buildings in Hong Kong using a time-flow rate approach while taking account of the simultaneous usage patterns of occupant loads, per-occupant demand rate, water flow rate and demand time of installed appliances

Concluding remarks (3)

With an illustrative example for Hong Kong case, this paper presented a template for the development of a stochastic demand model that estimates the probable maximum simultaneous water demands for high-rise residential buildings

Acknowledgment

The work described in this paper was substantially supported by a grant from the Research Grants Council of the HKSAR, China (PolyU5305/06E with an account code BQ01L).