

Risk Associated with Transformer Degradation

Shuzhen Xu Research Division, FM Global

May 18th, 2008, PSAM9, Hong Kong, China

Motivations and Objectives
Methodology with the use of ANN
Preliminary results and some issues
Data simulation
Conclusions

Motivations

Objectives

Failure probability assessment

- Early failures.
- "Over-stress" failures.
- "Under-strength" failures.

> Degradation assessment

- Degradation causes: operation history, maintenance, environment, design effects etc.
- Difficulties: no single element available to measure the degradation level although many relevant tests are adopted in the industry.

Methodology Overview

Degradation Estimation Failure probability metrics construction

Methodology – failure probability metric

Step 1: unit survey to collect

Step 2: estimate the PDF and calculate MTTF

Step 3: estimate the CDF

Step 4: introduce degradation variable θ and the failure probability metric related to θ

Methodology – degradation estimation using ANN

FMElabal

Two important steps: Training and validation

Methodology- training data gathering

- $t_{ij} j^{th}$ test time of i^{th} failed unit
- $L_i life$ to failure of ith unit
- d_{ij} degradation at T_{ij} ($d_{ij} = t_{ij}/L_i$)
- $\underline{\mathbf{x}}_{ij}$ vector of variables measured at \mathbf{t}_{ij}

Training case: $(\underline{x}_{ij}, d_{ij})$

Equipment history

Methodology- ANN training and validation

FMGlabal

Actual degradation, d

Methodology- failure probability calculation FM^{flubal}

Preliminary results and issues

An example of the failure probability prediction for a field unit caused by degradation

(one and two years ahead)

Data simulation

>Procedure:

Step 1: Calculate the means (M_{ij}) and the Std.s (D_{ij}) at different stages of degradation based on real collected test data. Step 2: Force the mean increase monotonously by using curve fitting (μ_{ij}) . Step3: Recalculate the Std.s S_{ij} of the test data at different stages. $S_{ij} = K \cdot \rho_i \cdot \mu_{ij}$ Step 4: Use the curved means and the recalculated Std.s to simulate the test data at

different stages.

*: original test data; •: calculated mean value; +: curve fitted mean value

ANN structure evaluation

Performance criteria

$$\varepsilon = \frac{1}{m} \sum_{j=1}^{m} \sqrt{\frac{1}{n}} \sum_{k=1}^{n} \left(\sigma_{jk} - \tau_{jk}\right)^2$$

- ε: Error of ANN estimates
- m: number of training cases
- n: number of measurements during the lifetime of the transformer
- σ_{jk} : Estimated degradation parameter d_{jk} : Actual degradation parameter

ANN structure evaluation

ANN training cases evaluation

Variance factor	K=0.5	K=1	K=1.5
Asympotic training value	0.0197	0.0263	0.0282
Asympotic validation value	0.0199	0.0264	0.0285
Number of training cases	90	130	140

$$S_{ij} = K \cdot \rho_i \cdot \mu_{ij}$$

➤The proposed method to estimate the failure probability of transformers due to degradation by utilizing an ANN shows promising results.

> The approach to generate abundant data statistically equivalent to real data allows the evaluation of the ANN structure and the minimum number of cases required to achieve a certain degree of confidence in the results.

➢Further work is currently proceeding to acquire more data and provide better estimates.

Thanks for your attention