

Comparative Evaluation of Modeling and Simulation Techniques for Interdependent Critical Infrastructures

Irene Eusgeld, Wolfgang Kroeger ETH Zurich, Laboratory for Safety Analysis (LSA)

Goal

To evaluate and elaborate techniques adequate for vulnerability analysis, not to find "the best method"!

Source

Open source material research

Problems

- Lack of progress in this research field
- Inconsistency of definitions and taxonomy
- Confidential issue

Major challenge : From reliability engineering of complicated systems ...

Problems:

- Numerous variables, highly integrated
- Structure stable over time, low dynamics
- Analytical thinking and diligence sufficient

Methods:

- Decomposition of systems, causal chains; PSA framework
- Further development required, e.g. human factors

... to reliability engineering of complex systems

Complex systems:

- Inadequate information about elements, states and interactions
- Nonlinearities, adaptive emergent behavior
- Feedback loops
- Tend to create surprise

Problems:

- System behavior unequal sum of single elements' behavior
- Strong interdependencies
- Need to model and simulate "system-of-systems"

- Modeling focus
- Methodical design strategies
- Type of interdependencies
- Types of events for simulation
- Course of triggered events
- Data needs
- Monitoring area
- Modeling and simulation paradigms
- Maturity

- Modeling focus
 - Interdependencies Analysis
 - System Analysis
- Methodical design strategies
- Type of interdependencies
- Types of events for simulation
- Course of triggered events
- Data needs
- Monitoring area
- Modeling and simulation paradigms
- Maturity

- Modeling focus
- Methodical design strategies
 - Bottom-up
 - ➤ Top-down
- Type of interdependencies
- Types of events for simulation
- Course of triggered events
- Data needs
- Monitoring area
- Modeling and simulation paradigms
- Maturity

- Modeling focus
- Methodical design strategies
- Type of interdependencies
 - > Cyber
 - Geographic
 - Physical
 - Logical
- Types of events for simulation
- Course of triggered events
- Data needs
- Monitoring area
- Modeling and simulation paradigms
- Maturity

- Modeling focus
- Methodical design strategies
- Type of interdependencies
- Types of events for simulation
 - Accident
 - Attack
 - ➤ Failure
- Course of triggered events
- Data needs
- Monitoring area
- Modeling and simulation paradigms
- Maturity

- Modeling focus
- Methodical design strategies
- Type of interdependencies
- Types of events for simulation
- Course of triggered events
 - Cascading events
 - Escalating events
 - Common cause events
 - Confined events
- Data needs
- Monitoring area
- Modeling and simulation paradigms
- Maturity

- Modeling focus
- Methodical design strategies
- Type of interdependencies
- Types of events for simulation
- Course of triggered events
- Data needs
 - ≻ High
 - ≻ Low
- Monitoring area
- Modeling and simulation paradigms
- Maturity

- Modeling focus
- Methodical design strategies
- Type of interdependencies
- Types of events for simulation
- Course of triggered events
- Data needs
- Monitoring area
 - Vulnerability assessment
 - Failure analysis
 - Mitigation/prevention and self healing strategies
 - Information generation
- Modeling and simulation paradigms
- Maturity

- Modeling focus
- Methodical design strategies
- Type of interdependencies
- Types of events for simulation
- Course of triggered events
- Data needs
- Monitoring area
- Modeling and simulation paradigms
 - Discrete events
 - Continuous events
- Maturity

- Modeling focus
- Methodical design strategies
- Type of interdependencies
- Types of events for simulation
- Course of triggered events
- Data needs
- Monitoring area
- Modeling and simulation paradigms
- Maturity
 - ≻ High
 - ➢ Middle
 - > Poor

Modeling and Simulation Techniques

- Agent-based modeling
- System Dynamics
- Hybrid System Modeling
- Input-Output Model
- Hierarchical holographic modeling
- Critical Path Method
- High Level Architecture
- Petri Nets

Modeling and Simulation Techniques

- Agent-based modeling
- System Dynamics
- Hybrid System Modeling
- Input-Output Model
- Hierarchical holographic modeling
- Critical Path Method
- High Level Architecture
- Petri Nets

Modeling and Simulation Technique: ABM (Electric Power Supply Infrastructure exemplenary)

Simulation Results

Evaluation Example (I): Agent-based modeling

ABM was successful applied in:

- Economics (supply chain optimization, consumer behavior, etc.)
- Informatics (distributed computing, traffic congestion, etc.)
- Critical infrastructures interdependencies
- etc.

Problems:

- Each simulation is very time consuming
- Larger number of parameters
- Data availablity problem

Evaluation Example (I): Agent-based modeling

One

Maturity	High ⊙○○○			
Paradigm	Discrete ••••			
Monitoring Area		Failure Analysis		Information
Data Needs	High ⊙○○○	Low		
Course of Triggered Events	Cascading	Escalating	Common cause	Confined
Types of Events	Accidents	Attacks	Failures	
Types of Interdependencies	Physical	Cyber	Geographic	Logical
Design Strategies	Bottom up			
Modeling Focus		System Analysis		

Modeling and Simulation Techniques

- Agent-based modeling
- System Dynamics
- Hybrid System Modeling
- Input-Output Model
- Hierarchical holographic modeling
- Critical Path Method
- High Level Architecture
- Petri Nets

Examples of infrastructure interdependencies [Rinaldi et al. 2001]

Petri Net Model of infrastructure interdependencies [Gursesli & Desrochers, 2003]

Table 4.8.1 Legend for Petri Net Model [GuDe 2003]

TRANSITIONS	PLACES
1 "Electric Power is Disrupted"	1 "Electric Power ON"
2 "Lubricants in Reserves are Consumed"	2 "Electric Power OFF "
3 "Power Disruption Affects Natural Gas	3 "Natural Gas Production Stops"
Production"	<i>4</i> "Consumed Natural Gas"
4 "Natural Gas in Reserves is consumed	5 "OiVLubricant Productions Stop"
5 "Power Disruption affects OivLuhricants	6 "Consumed Oil"
Production"	7
6 "Oil in Reserves is Consumed"	8 "Consumed Lubricants"
7 "Lubricants are Disrupted"	9 "Lubricant Production Stops Mirror"
8 "Both Oil and Natural Gas are Disrupted"	IO "Consumed Lubricants Mirror"
9 "Power Disruption Affects Oil	11 "Electric Power OFF Mirror (for Oil
Transportation"	Production)"
10 "Power Disruption Affects Natural Gas	12 "Oil Production Stops Mirror"
Transportation"	13 "Natural Gas Production Stops Mirror"
1 1 "Transportation Affects Electric Power	14 "Telecommunication OFF Mmor (for
Generation"	Natural Gas
12 "Power Disruption Affects	
Telecommunication"	33 "Consumed Natural Gas Mirror (for
	Transportation)"
23 "Consumed Natural Gas Affects	
Transportation"	

Evaluation Example (II): Petri Nets

PNs were applied to:

- Common mode and cascading effects in complex systems
- Analysis the impact of communication on power grid

also suitable to

formalise and simulate dynamic aspects e.g.

- Workflow systems
- Distributed and concurrent computing systems

Problems:

- Graphical representation may become too complex to be useful
- Additional Information needs many parameters or programming
- Numerical solution is not always feasible
- Simulation may be very time consuming

Evaluation Example (II): Petri Nets

and the

Maturity			Middle	0000		
Paradigm	Discrete	0000				
Monitoring Area			Failure Analysis			Information
Data Needs	High	0000	Low	0000		
Course of Triggered Events	Cascadir	ng ecco			Common cause	Confined
Types of Events					Failures 0000	
Types of Interdependencies	Physical	0000				
Design Strategies			Top d	own		
Modeling Focus	Interdepe Analysis	endency • • • • •	Syster	m Analysis ◎ ○ ○		

Comparative evaluation of methods: Evaluation code

	ABM	SD	HSM	ЮМ	ННМ	СРМ	HLA	PNs
Maturity	••••	0000	0000	0000	0000	0000	0000	0000
Paradigm	••••	••••		0000	0000	••••	••••	• • • •
Monitoring Area	0000	0000		0000	0000	0000	0000	0000
Data Needs	0000	0000	0000	0000	0000	0000	0000	0000
Course of Triggered Events		• • • •	• • • •	• • • •	0000	• • • •		
Types of Events	0000	0000		0000		0000		0000
Types of Interdependencies				0000	••••			0000
Design Strategies	0000	0000	0000	0000	0000	0000	0000	0000
Modeling Focus	0000	0000	0000	0000	0000	• • • • •	0000	0000

Comparative evaluation of methods: Evaluation code

	ABM	SD	HSM	ЮМ	ННМ	СРМ	HLA	PNs
Maturity	••••	••••	0000	0000	0000	0000	0000	0000
Paradigm	••••	••••		0000	0000	••••	••••	0000
Monitoring Area	0000	0000		0000	0000	0000	0000	0000
Data Needs		0000	0000	0000	••••	••••	0000	0000
Course of Triggered Events		• • • •	• • • •	• • • •	0000	• • • •	0000	0000
Types of Events	0000	0000		0000	© © O O	0000		0000
Types of Interdependencies				0000				• • • •
Design Strategies	0000	0000	0000	0000	0000	0000		0000
Modeling Focus	0000	0000	0000	0000	0000	0000	0000	0000

Comparative evaluation of methods: Evaluation code

	ABM	SD	HSM	ЮМ	ннм	СРМ	HLA	PNs
Maturity	••••	••••	0000	0000	0000	0000	0000	0000
Paradigm	••••	••••		0000	0000	••••	••••	••••
Monitoring Area	0000	0000		0000	0000	0000	0000	0000
Data Needs	0000	0000	0000	0000	0000	0000	0000	0000
Course of Triggered Events		• • • •	• • • •	• • • •	0000	• • • •		
Types of Events	0000	0000		0000		0000		0000
Types of Interdependencies				0000				0000
Design Strategies	0000	0000	0000	0000	0000	0000	0000	0000
Modeling Focus	0000	0000	0000	0000	0000	0000	0000	0000

Underlying methods by tools for M&S of CI

Chi

No.	Underlying Methodologies	Abbreviations	No. of Methods
1	Agent-Based Method	ABM	13
2	Geografic Information System	GIS	6
3	System Dynamics	SD	4
4	Statistical Data Analysis	SDA	3
5	Monte Carlo	MC	2
6	Input-Output Methods	IOM	2
7	Graph Theory	GT	1
8	Control Theory	СТ	1
9	Miscellaneous	MI	1

Conclusions

- Nine evaluation criteria defined
- Eight M&S methods selected, analysed, described and evaluated
- Reasons for their use hypothesized
- Overview about strengths and weaknesses of methods given
- Basis for the decision on single or combined methods offered

Complex Systems

