

1

1

Evaluating network reliability versus topology by BDD algorithms

A. Bobbio, R. Terruggia, E. Ciancamerla, M. Minichino

PSAM 9 – International Probabilistic Safety Assessment and Management Conference Hong Kong – China, 18 -23 May 2008

ENEL

Summary

- A network is a structure where any couple of nodes is normally connected by different independent paths, thus making the structure intrinsically dependable
- Network reliability emerges as a critical issue for characterizing a network, but it is also a major challenge (the problem is known to be NP-complete, thus no fast general algorithm is likely to exist)
- Binary Decision Diagrams (BDD) have provided an extraordinarily efficient technique to encode Boolean functions
- We compute network reliability relying on two BDD algorithms
- A preliminary tool is in progress
- Critical Infrastructures (CI) form a framework of interconnected and interdependent networks (well represented by two specific topological classes: Random Graphs and Scale Free networks)
- We present preliminary results of a scalable benchmark, that includes different network structures, namely Random and Scale Free networks 2

Network definitions

- **Graph** G=(V,E): has two elements, nodes and arcs.
- **Binary network**: graph elements as binary objects (working/failed states)
- **Connectivity**: is defined by means of the **paths** connecting any two nodes in a binary network connectivity becomes a boolean function
- **Reliability** may be computed, if a probability measure (of being up/down) is associated to elements of the network
- **Two-terminal reliability** is the probability that two nodes communicate with each other by at least one path of working edges: (s,t) reliability

Network reliability

Arcs and nodes are binary entities

We study:

- Connectivity
- Reliability
- Qualitative analysis:
 - Minimal paths
 - Minimal cuts
- Quantitative analysis:
 - Reliability and Unreliability functions
- We show how the (s,t)-connectivity of a binary graph can be encoded into a BDD, and how the corresponding reliability measure can be computed for different network topologies

Binary Decision Diagrams

- A BDD represents a Boolean function by means of the Shannon's decomposition:
 - If *F* is a Boolean function on the variables $x_1, x_2, ..., x_n$ the Shannon decomposition holds:
 - $F = x_1 \land F_{x_{1}=1} \lor \underline{x}_1 \land F_{x_1=0}$ where, $(\underline{x}_1 = NOT x_1)$;

- $F_{x_{1}=1}$ is derived from F assuming x_1 is true, and $F_{x_{1}=0}$ is derived from F assuming x_1 is false.
- Applying iteratively the Shannon's decomposition formula pivoting with respect to a sequence of all the variables, a complete decomposition can be obtained.
- The sequence of decompositions can be represented in graphical form using a binary tree.
 - Each node of the tree represents the pivot variable with respect to which the decomposition is done.
 - Each node has two branches: the right branch has the value 1 and the left branch has the value 0
 - The BDD has a single root (represented by the first pivot variable) and two terminal leaves: the 1 leaf and the 0 leaf.
 - Any path from the root to the 1 leaf of a BDD represents a combination of variables (either direct or negated) that makes the function true (viceversa for a path from the root to the 0 leaf)

ENER

Network reliability via BDD

If we assign to every variable x_i a probability p_i of being true (1 - p_i false), we can compute the probability $P \{F\}$ of the function F by applying recursively the equation:

$$P\{F\} = p_{l}P\{F_{xl=l}\} + (1 - p_{l})P\{F_{xl=0}\}$$

Two different algorithms have been implemented to compute network reliability via BDD:

- the first based on the search of the minpaths
- the second based on a recursive visit of the graph

ENEL

2-terminal reliability via Minpath Analysis (MPA)

- Given a network G=(V,E) and two nodes (s, t)
 - a (s, t) Path: a subset of elements (arcs and/or nodes), that guarantees the source and the destination to be connected if all the components of this subset are functioning.
 - a path is minimal (minpath) if does not exist a subset of nodes that is also a path
- If H₁, H₂,..., H_n are the minpaths between s and t, then the two terminal network connectivity S :
 - $S = H_1 \lor H_2 \lor \ldots \lor H_n$
 - The two terminal reliability R_{s,t} can be determinated from network *minpaths*:
 R_{s,t} = Pr{S} = Pr{H₁ ∨ H₂ ∨ ... ∨ H_n}
- The connectivity expression is a Boolean function for which the Shannon's decomposition can be applied and the related BDD constructed.

- From the BDD, the (s,t)-reliability can be finally computed from $P \{F\}$ formula

2-terminal reliability by graph Visiting Algorithms (VA)

- The BDD representation of the 2-terminal connectivity of a graph, can be directly derived without passing from a preliminary search for the minpaths
- In literature an algorithm is proposed that generates the BDD directly, via a recursive visit on the graph
 - Given a graph G = (V;E) and two nodes (s,t), the algorithm starts from s node and visits the graph (according to a given but arbitrary visiting strategy) until t node is reached
 - The BDD construction starts recursively once the sink node t is reached
 - The BDD's of the nodes along a path from s to t are combined in AND, while if a node possesses more than one outgoing edge the BDDs of the paths starting from each edge are combined in OR
 - As a last step the algorithm visit the source node and builds the BDD for the complete connectivity function
- The minpaths provide a qualitative information about the most favorable connections (in term of number of hops) between source and sink

Tool implementation

- A software tool for network reliability analysis is under construction.
- The tool accepts in input a graph with various formats: incidence matrix, adjacency list, formats provided by other tools
- The user may optionally choose which elements are failure prone and assign the corresponding failure probabilities.
- Finally, the s and t node must be assigned so that the program can provide the two-terminal reliability and the list of minpaths.
- The tool embodies the two approaches previously described:
 - the preliminary search of the minpaths. The algorithm relies on a recursive call of a function based on the classical Dijkstra's algorithm. Once the minimal paths between nodes s and t are explored (and ordered by rank), the BDD is constructed.
 - the BDD for the chosen connectivity function is directly constructed. The construction and manipulation of the BDD's is managed through the BDD library developed at the Carnagie Mellon University.

10

• the list of the minpaths and of the mincuts may be optionally determined.

ENEL

Scalable Benchmark

• A scalable benchmark is underway to evaluate and to compare the efficiency of the software tool against the increasing complexity of different network topologies: namely RG and SF networks.

Structural properties of a Graph and measures

- The main structural properties of a graph stem from its classification as belonging to a specific topological class (i.e. Random and Scale Free)
- Structural properties can be characterized by different measures. We consider:
 - the distribution of the connectivity degree: by defining as connectivity degree k of a node the number of arcs emerging from that node, the distribution of connectivity degree P(k) is the probability of a node to have degree k
 - **the clustering coefficient** *C*: measures the propensity of nodes to form local communities; the clustering coefficient is a measure of the fraction of neighbors of a node which are also neighbors each other.
- From what concerns reliability studies on networks, the most relevant issue is that the structure of the network influences its reliability

ENEN Large Scale Networks

E(X_k)/N

0.10

₹ × 0.05

0.00

Structure and properties of complex networks Random Graphs – The degree distribution is Poisson;

Scale free networks - The degree distribution is power law (long tail)

ENEN Random and Scale Free networks

- The most relevant topological classes of networks for representing CI structures, are RG and SF networks.
 - In RG networks, the degree distribution P(k) follows a Poisson distribution; the network degree is characterized by an average value $\langle k \rangle$ with a given standard deviation. RG networks are believed to be produced by a growth mechanism where new nodes stuck randomly to existing nodes (random growth mechanism).
 - In SF networks, the degree distribution P(k) follows a power-law. SF networks result in the simultaneous presence of a small number of very highly connected nodes (the hubs) linked to a large number of poorly connected nodes (the leaves). The growth model, known as *preferential attachment*. is realized by assuming that the probability Pi(n + 1) of the (n + 1)-th generated node sticks to node *i*, increases linearly with the degree of *i*.
- SF networks are more robust to random arc or node removal than RG networks but are more prone to malicious attacks, where the nodes with highest degrees are first removed.

Network generating algorithms

- to test the tool we have implemented two algorithms to respectively grow a RG and a SF network.
 - The growth mechanism of RG requires three input parameters: the number of connections (or degree k) that a newly generated node may establish; the probability of attachment p; and the final dimension of the network N.
 - Two random generators are used to establish the attachment of the n+1 node: a first one sorts a node *i* at which the n + 1 node could be attached. A second generator sorts a random number p_1 . If $p_1 \le p$, the n+1 node will be attached to node *i*
 - To generate a SF network, what changes is the attachment process. A first generator sorts a node *i* at which the n+1 node could be attached. Node *i* will be considered for the attachment if it has not been already sorted; in that case we compute Pi(n+1) according to Equation 1. Then a second generator sorts a random number p1. If $p_1 \le Pi(n+1)$ then the new n+1 node is attached to node *i*.
- The growth algorithm is incremental, in the sense that once we have generated a graph with *N* node of any topology, we can add on the same structure an arbitrary number of new nodes.

ENEN Benchmark results on Random Graphs

- Table displays the results obtained on RG networks
- Networks are grown according to the described algorithm with an increasing number of final nodes N, while keeping constant the number of connections (k = 2), and the probability of attachment (p = 1).
- The first generated node is assumed as the source s and the last generated node as the sink t.
- The first three columns report the final number of nodes, the final number of edges and the clustering coefficient. Columns 4, 5, 6 report, respectively, the number of minpaths, the number of the nodes of the BDD with VA algorithm, the number of the nodes of the BDD with MPA algorithm and the reliability value.

#nodes	# arcs	clustering	# minpath	# BDD nodes	# BDD nodes	(s,t)
		coefficient		VA	MPA	reliability
20	72	0.1632	2046	316360	10032	0.98885
25	92	0.1267	21040	3333930	32653	0.98886
30	112	0.1502	119033	n.a.	708801	0.98906
40	152	0.1379	6757683	n.a.	n.a.	n.a.
50	192	0.0660	n.a.	n.a.	n.a.	n.a.

Benchmark results on Scale Free

• Table displays the results obtained on SF networks

- Networks are grown according to the described algorithm with an increasing number of final nodes N, while keeping constant the number of connections (k = 2)
- The first generated node is assumed as the source s and the last generated node as the sink t.
- The firrst three columns of each table report the final number of nodes, the final number of edges and the clustering coefficient. Columns 4, 5, 6 report, respectively, the number of minpaths, the number of the nodes of the BDD with VA algorithm, the number of the nodes of the BDD with MPA algorithm and the reliability value.

#nodes	#arcs	clustering	# minpath	# BDD nodes	# BDD nodes	(s,t)
		coefficient		VA	MPA	reliability
20	74	0.5869	263	10409	266	0.98010
25	94	0.4388	2651	186350	5019	0.97815
30	114	0.3927	4707	n.a.	239788	0.98001
40	154	0.3888	73680	n.a.	n.a.	<i>n.a.</i>
50	194	0.3499	<i>n.a.</i>	n.a.	n.a.	n.a.

Conclusions and future work

- A tool for the reliability analysis of networks by means of different independent algorithms via the construction of a BDD is under experimentation.
- The ability of the algorithms to cope with different network topologies of increasing complexity is under testing
- Network reliability problem is NP-complete
- For very large networks new algorithms are needed
- In the immediate future we are investigating:
 - the limits of the technique with extensive amount of static memory
 - the service availability of interconnected networks by convenient heterogeneous stochastic techniques, that include this one