
Bayesian Modeling of 
Population Variability:
Practical Guidance and 
Pitfalls

PSAM-9
May 2008

Dana Kelly
Idaho National Laboratory
Dana.Kelly@inl.gov

Corwin Atwood
Statwood Consulting
cory@statwoodconsulting.com



Outline

• Overview of hierarchical Bayes for population variability

• Convergence problems

– Diagnosing problems

– Reparameterizing to avoid problems

• Sensitivity to choice of first-stage prior
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• Sensitivity to choice of first-stage prior

– Problems with conjugate priors when variability is 
large

– Use of nonconjugate first-stage prior

– Choosing hyperpriors

• Conclusions



Modeling Population Variability via 
Hierarchical Bayes
• Want to use information from more than one source to 

estimate parameters, such as p or λ

• It may be possible that we cannot pool information as 
estimates from disparate sources might differ 
significantly

• Use hierarchical Bayes analysis to develop population 
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• Use hierarchical Bayes analysis to develop population 
variability curve (PVC)

– Represents source-to-source variability in 
parameters of interest

– Uses hierarchical prior, specified typically in two 
stages



Hierarchical Priors

• Bayesian approach is to specify prior in stages (hierarchies)

– First stage is gamma(α, β) prior for λi (or other functional form)

– Second stage is joint prior π(α, β)

• Called hyperprior

• α, β called hyperparameters

• Often use diffuse (noninformative) independent priors for 
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• Often use diffuse (noninformative) independent priors for 
hyperparameters

– Two stages typical, but can model three or more

∫∫= βαβαπβαλπλπ dd),(),|()(

Overall prior

First-stage prior Second-stage 

prior (hyperprior)



Bayesian Network Formulation of 
Problem
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First Example:  Loss of Offsite AC Power

• Data taken from NUREG/CR-5496

Events Exposure time 

(yr)

Events Exposure Time 

(yr)

1 13.054 5 21.5

1 12.77 0 10.075

1 7.22 0 26.32

1 3.944 1 12.54
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1 3.944 1 12.54

1 10.548 3 17.5

0 10.704 1 14.3

0 24 3 10.89

1 8.76 3 12.5

3 11.79 0 21.38

2 17.5 2 19.65

0 20.03 0 11.34

0 13.39



Side-by-Side Interval Plot Illustrates 
Plant-to-Plant Variability

• 95% credible intervals from update of Jeffreys prior for each 
plant
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Hierarchical Bayes Model for LOSP Data

• Will use gamma first-stage prior

• Independent diffuse hyperpriors on first-stage gamma 
parameters

• Will run two MCMC chains

– Initial values selected by finding empirical Bayes 
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– Initial values selected by finding empirical Bayes 
estimates of gamma parameters

• Starting values dispersed around EB estimates to 
obtain good coverage of joint posterior distribution



Illustration of Convergence Problems

• Plot of first 100,000 iterations shows poor mixing of 
chains

iteration
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• Brooks-Gelman-Rubin (BGR) convergence diagnostic 
confirms lack of convergence

– Red line should be near 1.0

– Blue/green lines not stable

iteration

alpha chains 1 : 2

iteration

500 250005000075000

0
.0

1
.0



Convergence Problems Can Arise from 
Highly Correlated Parameters

• Rank correlation coefficient for gamma parameters is 
0.98

• Reparameterize gamma first-stage prior in terms of 
“independent” parameters

– Use mean = α/β and coefficient of variation = 
std.dev./mean = α-0.5
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– Use mean = α/β and coefficient of variation = 
std.dev./mean = α-0.5

– Use independent diffuse hyperpriors on mean and 
CV



Convergence Results with 
Reparameterized Model

• History for first 10,000 iterations shows chains well 
mixed

iteration
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• BGR diagnostic shows no problems

iteration
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Results for Reparameterized Model

• Mean is 0.09/yr

• 90% credible interval is (0.02, 0.20)

• Numerically close to EB results

– Expected as variability is not too large

– Illustrated by marginal posterior distribution for CV, 
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– Illustrated by marginal posterior distribution for CV, 
which is peaked at small values

CV
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Sensitivity to Choice of First-Stage Prior

• Re-analyze first example with lognormal first-stage prior

– Use independent diffuse hyperpriors on lognormal 
parameters

• Mean is 0.10/yr

• 90% credible interval is (0.02, 0.24)
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• 90% credible interval is (0.02, 0.24)

• Little sensitivity to choice of first-stage prior for this 
example

– Expected as variability is not too large



Second Example:  Digital I&C Failure 
Data
• 35 data sources, assumed to be Poisson-distributed

• Side-by-side interval plot illustrates extreme variability in Poisson 
rate
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Data taken from Yue, Meng and Chu, Tsong-Lun. 

Estimation of Failure Rates of Digital 

Components Using a Hierarchical Bayesian 

Method. New Orleans : 2006. International 

Conference on Probabilistic Safety Assessment 

and Management.
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Results with Gamma First-Stage Prior

• Mean is 0.09/yr

– EB mean is 0.07/yr

– Median is 0.01/yr

• 90% credible interval is (6.7E-8, 0.4)

• Posterior mean of α is 0.24 

15

• Posterior mean of α is 0.24 

– EB estimates α = 0.24

• Conjugate first-stage prior can only capture large 
variability by having small value of α

– Gives vertical asymptote at 0

• Unrealistically small lower percentiles



Lognormal First-Stage Prior

• Lognormal density goes to 0 at 0

– No vertical asymptote

• Must avoid overly restrictive hyperpriors, especially on  σ

– Data-based unif(1, 3.5) hyperprior causes truncation of upper 
tail of posterior density for σ

– Leads to low estimate of mean
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– Leads to low estimate of mean

– Mean depends strongly on σ

– Used flat hyperprior on µ and uniform(0, 5) hyperprior on σ

• σ = 1.4 corresponds to error factor of 10



Results with Lognormal First-Stage Prior

• Mean is 1.1 /yr

– Median is 0.007/yr

• 90% credible interval is (6.3E-5, 0.55)

• Recall results with gamma first-stage prior:

– Mean = 0.09/yr, median = 0.01/yr
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– Mean = 0.09/yr, median = 0.01/yr

– 90% interval (6.65E-8, 0.43)

• Mean is not robust, median and 95% value relatively 
robust



Conclusions

• Convergence can be an issue for hierarchical Bayes

– May need to reparameterize to accelerate 
convergence

• When variability is large, results can be sensitive to 
choice of first-stage prior
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choice of first-stage prior

– Conjugate prior requires small shape parameter to 
represent large variability

• Leads to unrealistically small lower percentiles

– Nonconjugate first-stage prior gives more realistic 
lower percentiles, but mean may not be representative



Conclusions

• In cases of large variability, median is more robust 
estimate than mean

• Recommended first-stage priors when variability is large;

– Poisson data:  lognormal prior for λ

– Binomial data:  logistic-normal prior for p
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– Binomial data:  logistic-normal prior for p

• Lognormal prior for p can give values > 1

• Logistic-normal and lognormal approximately same 
for small p



Conclusions

• With extreme source-to-source variability, may want to 
consider clustering sources and developing mixture 
prior or eliminating some sources altogether
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Mixture prior with 9 

clusters, equally 

weighted



Backup Slides
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Hierarchical Bayes Model for LOSP Data

• WinBUGS script

model {

for (i in 1 : N) {

lambda[i] ~ dgamma(alpha, beta) #Model variability in  frequency - gamma first stage

}

lambda.avg ~ dgamma(alpha, beta) #Industry population variability curve – gamma

alpha ~ dgamma(0.0001, 0.0001) #Vague hyperprior for alpha
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alpha ~ dgamma(0.0001, 0.0001) #Vague hyperprior for alpha

beta ~ dgamma(0.0001, 0.0001) #Vague hyperprior for beta

}

inits

list(alpha=1, beta=1000)

list(alpha=10, beta=100)



WinBUGS Script for Reparameterized 
Model
model {

for (i in 1 : N) {

lambda[i] ~ dgamma(alpha, beta) #Model variability in  frequency - gamma first stage

}

lambda.avg ~ dgamma(alpha, beta) #Industry population variability curve – gamma

alpha <- pow(CV, -2)

beta <- alpha/mean
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mean ~ dgamma(0.0001, 0.0001)

CV ~ dgamma(0.0001, 0.0001)

}

Inits

list(CV=0.5, mean=1)

list(CV=2, mean=0.1)



Results with Lognormal First-Stage Prior

• WinBUGS script

model {

for (i in 1 : N) {

lambda[i] ~ dlnorm(mu, tau) #Lognormal first-stage prior

}

lambda.avg ~ dlnorm(mu, tau)#Industry population variability curve – lognormal
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lambda.avg ~ dlnorm(mu, tau)#Industry population variability curve – lognormal

mu ~ dflat()

tau <- pow(sigma, -2)

sigma ~ dunif(0, 5)

}

inits

list(mu=-3, sigma=2)

list(mu=-1, sigma=1)


