

Development of a Reliability Data Handbook for Piping Components in Nordic Nuclear Power Plants – Part II

Authors:

Anders Olsson, Relcon Scandpower AB

Bengt Lydell, Scandpower Inc.

Project funded by:

OKG, FKA, RAB and SKI

Presentation outline

- Background
- Project status
- Result from Pilot Study Technical Requirements of the R-Book
- Example of results from Phase II
- Conclusion

Background – History

- Project history
 - In 1994 the Swedish Nuclear Inspectorate (SKI) funded a 5 year R&D project with objective to:
 - Investigate possibilities for deriving pipe failure rates and rupture probabilities from service experience as an alternative to probabilistic fracture mechanics
 - Pilot project for LOCA frequencies (SKI Report 98:30)
 - The pipe failure database was transferred to OECD Nuclear Energy Agency
 - OECD Pipe Failure Data Exchange Project (OPDE) (www.nea.fr/html/jointproj/opde.html)

Background – OPDE

- Objectives of OECD Pipe Failure Data Exchange Project (OPDE)
 - Collect and analyze piping failure event data to facilitate:
 - understanding of underlying causes, impact on operations and safety, and prevention
 - establish a mechanism for efficient feedback
 - Collect information on piping reliability attributes and influence factors to facilitate estimation of piping failure frequencies
- Current project participants (12 countries 19 organizations)

Belgium	Canada	Czech Republic	Finland
France	Germany	Japan	Republic of Korea
Spain	Sweden	Switzerland	United States

OPDE Database (Dec 2007)

• 7,385 reactor critical years; 3,755 failure events from 1970 up to date

Project status – Pilot study

- Presented at PSAM-8 (paper 0063)
- Completed during end of 2007 and documented in SKI Report 2008:01
 - available on the Internet at <u>www.ski.se</u>.
- Scope included in SKI Report 2008:01:
 - Review existing pipe failure databases
 - Review of methods for estimation of piping reliability parameters
 - Establishment of user requirements concerning
 - Content
 - Level of detail
 - Updating philosophy
 - For a complete list of requirements refer to SKI Report 2008:01.

- Applicability and level of detail
 - Main purpose of the R-Book will be to provide data for PSA
 - Priority is to develop a first issue as soon as possible and therefore the information will be limited to "PSA input data".
 - The R-Book will provide tabulations of failure rates for an initial defect for different systems organized by pipe size and material
 - Conditional probabilities of different leakage threshold values will be calculated for each initial defect
 - method described in ASME conference paper PVP2007-26281
 - \Rightarrow frequencies for different leakage threshold values

- Applicability and level of detail (cont)
 - In order to have significant statistical material both Nordic and International service data will be used and presented
 - Variability in counts of degradation and failures can normally be explained by differences in:
 - Reporting criteria
 - Design
 - Fabrication
 - Inspection practices
 - Difference in degradation susceptibility (ISI, mitigation, material selections)
 - Completeness
 - The R-Book will contain "recommended" pipe failure rates as well as enough qualitative and quantitative information to allow the user to further data specialization.

- Traceability
 - Data will be extracted from the OPDE database using queries in Microsoft[®] Access, each query will be given a unique ID and referenced in appendix to the R-Book.
 - Together with OPDE database version all failure counts can be reproduced
 - In OPDE the quality assurance of each event is shown with a Completeness Index (CI = 1, 2, 3) where CI=1, 2 means that verification of the specific event is satisfactorily to be included in the R-Book.
 - In case an event with CI=3 have been verified with respect to flaw and degradation mechanism it may be included as well – needs to be documented.

- Parameters to be presented
- λ_{ik} Frequency for an initial defect (calculated)
- P_{ik} Conditional probability for a leak consequence given the initial defect (calculated)
- *n_{ik}* Number of events (result from query)
- f_{ik} Portion of the total piping component population in a system that is susceptible to certain degradation or damage mechanism (based on OPDE and RI-ISI Degradation Mechanism Assessments)
- N_i Number of piping components in population (results from query)
- T_i Exposure time, based on number of reactor years (from plant population database)

- Impact of power uprate and modernization projects
 - For each plant system addressed in the R-Book relevant qualitative service experience information will be presented.

Plant System – e.g., BWR 313		Event History (Failure Count)				
Degradation Mechanism (DM#)		1970-1979	1980-1989	1990-1999	2000-2007	
DM1	Worldwide					
	Nordic					
DM2	Worldwide					
	Nordic					
DM3	Worldwide					
	Nordic					
DM4	Worldwide					
	Nordic					

Table 3.2: Scope of R-Book

Notes:

a - Mitigation program

b - Water chemistry

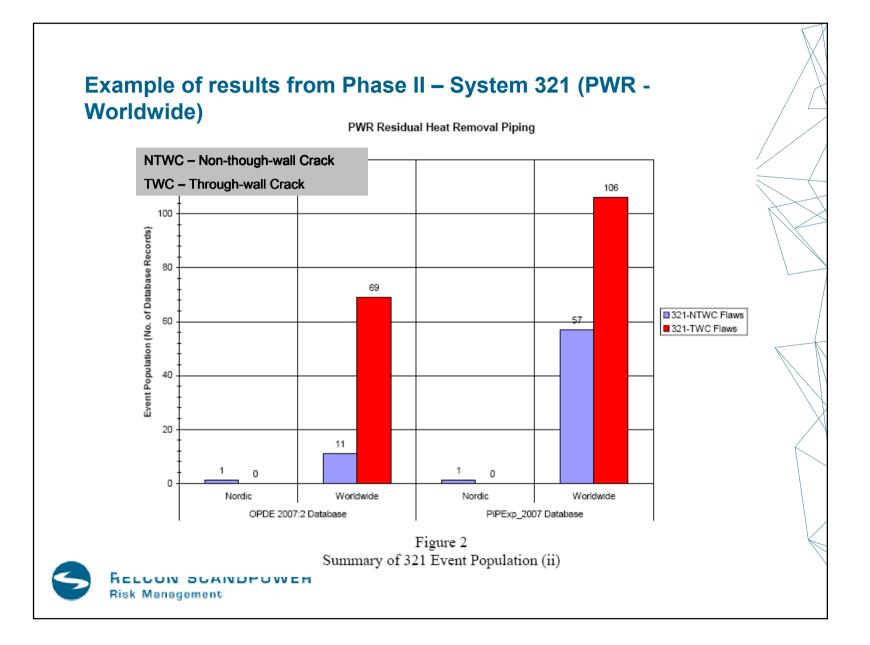
c - Material (e.g., typical types, material compositions)

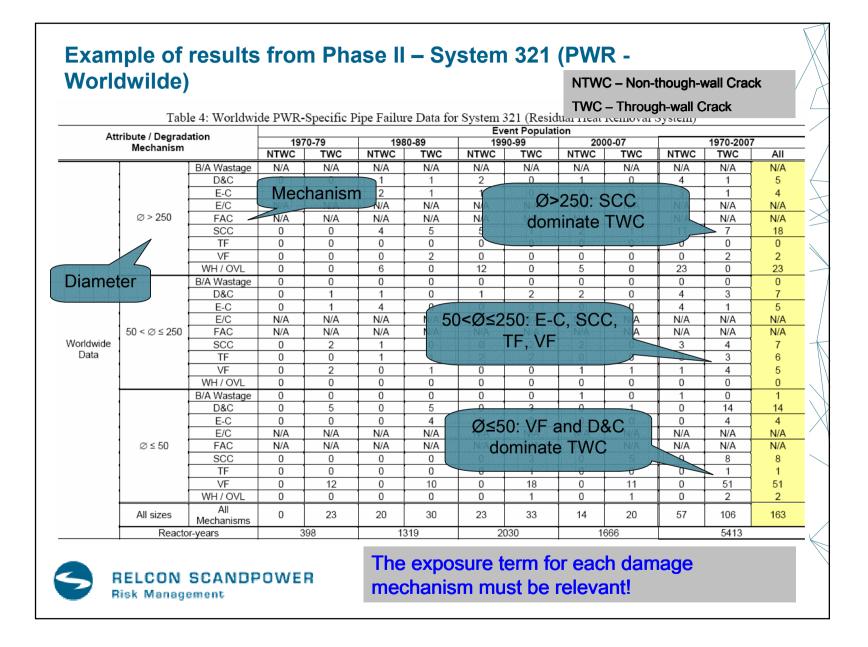
d - Ageing effects (including effects of power uprate projects)

e – Non-destructive examination (NDE)

- Impact of Human Error
 - In order for the user to be able to choose between if pipe failure due to humans error should be included or not the R-Book need to reflect the influence of human error for each system.
 - OPDE contains a "damage mechanism" that is attributed D&C – Design & Construction Errors/Defects. In OPDE "human error" is a subset of D&C which only applies to failures of small bore piping being damaged by maintenance personnel.
 - In the R-Book a format is therefore necessary for presenting the role of "human error", if any.

Project status – Scope of Phase II


- For some selected systems qualitative and quantitative data will be developed to demonstrate R-Book:
 - Content
 - Design
 - Methods
- A seminar will be held at June 18 with representatives Nordic utilities and SKI.
 - Demonstrate calculation format (theory, methods & techniques)
 - Comments and recommendations to be accounted for will be gathered
 - Decision point for continued work
- Continued work (2008 2009)



Example of results from Phase II

- Up to date the following system have been summarized with respect to qualitative information.
 - System 313 PWR Reactor Coolant System
 - System 313 BWR Reactor Recirculation System
 - System 321 Residual Heat Removal System
 - System 414/430 Condensate System
 - System 713/714 Service Water System
- Following slides will present some information about System 321 (PWR).

Conclusion

- The usefulness of any component failure data collection depends on the way by which a stated purpose is translated into database design and QA.
- Developing the R-Book is an important step to verify the content and quality of the OPDE database.
- Also it is important that interested parties strive against harmonized ways of creating reliability data to be used in safety analyses.
- R-Book will be one of many important information resources for risk-informed structural integrity management

www.scandpower.com www.riskspectrum.com

Anytime – Anywhere – Under all conditions - Unconditionally