A Review on Risk Levels Associated with LPG Filling Stations in Hong Kong

2005 Asia-Pacific Conference on Risk Management and Safety

1 December 2005

Matthew Ko
Executive Director
Maunsell Environmental Management Consultants Ltd
Introduction
Background

- LPG filling stations have been constructed and operated across Hong Kong since 1998
- LPG filling stations are classified as Notifiable Gas Installation (NGI) in accordance to Gas Safety Ordinance Cap. 51
 - QRA is required to support the NGI construction application
Introduction
Hong Kong Risk Guidelines

- Individual Risk Guideline
 - Maximum level of off-site individual risk should not exceed 1×10^{-5}/year

- Societal Risk Guideline
 - Expressed in terms of fN curve
 - Three areas in the fN curve
 - Acceptable
 - Unacceptable
 - ALARP (As Low As Reasonably Practicable)
Societal Risk Guideline

A Review on Risk Levels Associated with LPG Filling Station in Hong Kong. 1 December 2005
Objectives

- To identify dominant factors influencing the risk levels of LPG filling stations in Hong Kong
- To compare the planning standards and guidelines for LPG filling stations in Hong Kong
Methodology

- Review QRAs for 17 LPG filling stations
- QRAs were conducted following the methodology employed by the Gas Authority
- Use risk management software SAFETI (Micro v5.3.2)
- Assumptions
 - 90% of LPG road tanker delivery occurs during daytime
 - Nominal population at various locations was input into SAFETI
 - Conservative shielding factors
 - Occupancy factor for working and school population
 - Modification factor for indoor population in instantaneous release events
Methodology

- Potential Loss of Life (PLL) as the end point to compare risk levels among LPG filling stations
- Influencing factors investigated
 - Number of LPG storage vessel
 - Possible maximum amount of LPG release
 - Annual LPG throughput
 - Daytime nominal population around station
 - Night time nominal population around station
 - Separation distance from the station to the closest densely populated location
 - External events
Methodology

- Correlation analysis was applied to determine how strong the influencing factors and risk levels were related
Results (Risk Level and Risk Influencing Factor at Stations)

<table>
<thead>
<tr>
<th>Stn Code</th>
<th>No. of storage vessels</th>
<th>Max. LPG Release (kg)</th>
<th>Annual Through-put (t)</th>
<th>External Event</th>
<th>Daytime Nominal Pop.</th>
<th>Night-time Nominal Pop.</th>
<th>Distance to the Closest Location with Nominal Population (m)</th>
<th>Potential Loss of Life (per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>15000</td>
<td>4437</td>
<td>-</td>
<td>3586.4</td>
<td>1253.8</td>
<td>30 63 93 93</td>
<td>8.45E-5</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>14000</td>
<td>5454</td>
<td>-</td>
<td>2010.4</td>
<td>631.9</td>
<td>42 42 114 174</td>
<td>4.15E-5</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>10000</td>
<td>3618</td>
<td>Oil Depot Incident</td>
<td>3226.6</td>
<td>540.1</td>
<td>72 72 72 111</td>
<td>3.29E-5</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>15000</td>
<td>6507</td>
<td>-</td>
<td>284.7</td>
<td>177.1</td>
<td>60 60 - -</td>
<td>1.54E-5</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>10000</td>
<td>3429</td>
<td>-</td>
<td>275.1</td>
<td>210.4</td>
<td>There are village houses surrounding the station</td>
<td>1.01E-5</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>10000</td>
<td>3618</td>
<td>-</td>
<td>231.4</td>
<td>599.0</td>
<td>150 150 - -</td>
<td>7.63E-6</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>15000</td>
<td>900</td>
<td>Landslide</td>
<td>784.1</td>
<td>1241.6</td>
<td>102 102 102 -</td>
<td>6.69E-6</td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td>10000</td>
<td>1593</td>
<td>Landslide</td>
<td>1322.7</td>
<td>4063.0</td>
<td>102 102 150 -</td>
<td>4.78E-6</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>15000</td>
<td>360</td>
<td>Aircraft crash</td>
<td>186.3</td>
<td>588.9</td>
<td>175 175 - -</td>
<td>4.02E-6</td>
</tr>
<tr>
<td>J</td>
<td>1</td>
<td>10000</td>
<td>3618</td>
<td>-</td>
<td>527.1</td>
<td>711.7</td>
<td>93 93 93 - -</td>
<td>3.51E-6</td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td>13200</td>
<td>4608</td>
<td>Landslide</td>
<td>1195.2</td>
<td>2130.6</td>
<td>110 110 110 -</td>
<td>3.24E-6</td>
</tr>
<tr>
<td>L</td>
<td>2</td>
<td>10000</td>
<td>2169</td>
<td>-</td>
<td>1102.8</td>
<td>2050.9</td>
<td>87 87 87 - -</td>
<td>2.62E-6</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>13200</td>
<td>4059</td>
<td>Landslide</td>
<td>828.7</td>
<td>3186.1</td>
<td>106 106 128 181</td>
<td>2.60E-6</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>10000</td>
<td>3618</td>
<td>Landslide</td>
<td>212.0</td>
<td>756.4</td>
<td>165 210 - -</td>
<td>1.84E-6</td>
</tr>
<tr>
<td>O</td>
<td>1</td>
<td>15000</td>
<td>2889</td>
<td>-</td>
<td>782.1</td>
<td>250.5</td>
<td>111 111 168 -</td>
<td>1.43E-6</td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>15000</td>
<td>8676</td>
<td>Landslide</td>
<td>320.0</td>
<td>429.0</td>
<td>138 138 - -</td>
<td>7.38E-7</td>
</tr>
<tr>
<td>Q</td>
<td>1</td>
<td>9000</td>
<td>2160</td>
<td>Landslide</td>
<td>382.0</td>
<td>594.8</td>
<td>173 173 - -</td>
<td>3.92E-7</td>
</tr>
</tbody>
</table>
Results (Correlation Analysis)

<table>
<thead>
<tr>
<th>Risk Influencing Factor</th>
<th>Square of Correlation Analysis (r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum amount of LPG release</td>
<td>0.073</td>
</tr>
<tr>
<td>Annual LPG throughput of station</td>
<td>0.043</td>
</tr>
<tr>
<td>Daytime nominal population within study area</td>
<td>0.704</td>
</tr>
<tr>
<td>Night time nominal population within study area</td>
<td>0.011</td>
</tr>
<tr>
<td>Reciprocal of distance between station and the closest location with nominal population >50</td>
<td>0.889</td>
</tr>
<tr>
<td>Reciprocal of distance between station and the closest location with nominal population >100</td>
<td>0.449</td>
</tr>
</tbody>
</table>
Discussion

- Theoretical effect of influencing factor to risk level
 - Maximum LPG release ↑, risk level ↑ (consequence)
 - Annual throughput ↑, risk level ↑ (frequency)
 - Population around station ↑, risk level ↑ (consequence)
 - Separation distance to populated location ↓, risk level ↑ (consequence)
 - External event present, risk level ↑ (frequency)
 - Risk level of a station is determined by the combined effect of various factors
Discussions

- Observation from the review
 - Two factors appear to pose relatively large influence on predicted risk levels
 - Separation distance from station to the closest location accommodating large population
 - Daytime population around station
 - Other factors did not appear having strong relationship with the predicted risk levels
 - Night time population around station
 - Annual LPG throughput
Discussion

- Observation from the review
 - Effect of External Events
 - Landslide
 - Do not strongly influence the risk level
 - Aircraft crash
 - Seemed to contribute to the risk level considerably when the station is near airfield (aircraft landing/take off point)
 - The influence would depend on the distance to airfield (distance ↑, influence ↓)
Discussion

- The observations on the influencing factors are limited to the conditions of the 17 LPG filling stations reviewed
- How to avoid unacceptable risk posed by LPG filling station?
 - Allocate station sites away from densely populated areas
 - Allow considerable separation distance from populated location
 - Consistent with relevant planning standards and guidelines
Future Works

- Review more QRAs for LPG filling stations with application of more rigorous statistical analysis technique
- More information concerning influencing factors may help the development of some “rule of thumbs” to facilitate LPG filling site selection in the future
Conclusion

- Investigation on factors influencing risk levels of LPG filling stations
- Factors appeared to have more influential on risk level
 - Daytime population surrounding station
 - Separation distance from populated locations to station
Thank You!