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    I. Major Differences among GE BWR cores 
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II.  ESBWR Introduction  
 

•  Natural circulation in ESBWR is 
designed with an unrestricted 
downcomer, enhanced through 
optimization on the chimney 
height, active core length, and 
separator configurations.   

• Utilization of natural circulation 
and passive safety systems in  
ESBWR design simplifies 
reactor system designs, reduces 
cost, and provides a reliable 
stability solution for inherently 
safe operation.     
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III.  Stability Introduction 

 

• Stability protection goal – Fuel integrity 

• Conventional BWR instability -- during startup and after all 
recirculation pumps trip during normal operation.   

• BWR power oscillations -- inside an area with core flow close 
to natural circulation line and core power above 70% rod-line 
power. 

• Core-wide oscillation -- dominant mode of power oscillation 
and associated with excited fundamental mode of neutron flux 
in a BWR core; core-wide mode bundle power oscillations in 
entire core are in phase.  
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• Regional oscillation -- important in a large BWR core and 
associated with the excited 1st harmonic mode of neutron flux; 
regional mode bundle power oscillations in a half core are out 
of phase to corresponding regional mode bundle power 
oscillations in opposite half core.   

• BWR instabilities can be analyzed in terms of core and bundle 
(or channel) power decay ratios (DR).   

• Stability DR acceptance criterion must be much less than one 
(e.g., 0.80) in order to incorporate method uncertainty and 
adequate safety margin. 
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IV.  ESBWR Stability Solution  
 

• BWR Owners Group recommended guidelines on Interim Corrective 
Actions (ICA) Regions -- emphasize instability prevention but are 
based on industry experience. 

• Three ICA operating regions: Scram, Exit, and Controlled Entry 
Regions, to be validated using Core and channel DRs. 

• Core and channel DRs are computed using ODYSY, a frequency-
domain stability analysis computer program with physical 
parameters generated from results of PANACEA 3D BWR simulator 
calculations. 

• Bounding ICA Regions: expanded ICA Regions of a conventional 
BWR for minimum feedwater operation. 
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Comparison between ESBWR and Conventional BWR Power/Flow Maps 
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Stability Decay Ratio Acceptance Criterion 
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• A stability boundary is established by connecting the two bounding state 
points A and B of expanded ICA Exit/Controlled Entry Region boundary 
with a fitting function and by extending boundary to 100% rated power. 

• Stability boundary plus a conservative (at least 5%) core flow margin at 
100% rated power can be used to design an inherently safe ESBWR with a 
sufficiently high natural circulation flow line.   

• Design of a high flow natural circulation system in an ESBWR can be 
achieved by:  

1) Replacing a restricted downcomer with an unrestricted downcomer 
(natural circulation core flow can be increased as much as 100%; 
from roughly 23% rated to roughly 46% rated),  

2) Optimizing chimney height, active core length, and separator 
configurations (natural circulation is further increased from 46% 
rated to over 70% rated with a flow margin at least 5% higher than 
stability boundary flow at 100% rated power). 



2005 Asia-Pacific Conference on Risk Management and Safety, Hong Kong 
Dec 1-2, 2005 

 

10/10
 

V.  Conclusion 
 

• Conceptually reliable stability solution for inherently safe ESBWR 
operation has been developed by establishing a sufficiently high 
natural circulation flow line, which has a core flow margin at least 
5% higher than the stability boundary flow at 100% rated power of a 
conventional BWR 

• Design of a high flow natural circulation system in an ESBWR can 
be achieved by replacing a restricted downcomer with an 
unrestricted downcomer and by optimizing the chimney height, 
active core length, and separator configurations.  

• ESBWR stability solution eliminates instability risk in reactor 
operation and may be considered as an ideal case in risk 
management 

 


