
©Dr.M.Xie

SOFTWARE SYSTEM SAFETY AND RELIABILITYSOFTWARE SYSTEM SAFETY AND RELIABILITY

M. Xie, PhD (Quality), Fellow of IEEE

Professor, Dept of Industrial & Systems Engineering
National University of Singapore

©Dr.M.Xie

Quality, Reliability, Safety

Quality: multi-dimensional measurement
– Plenty of data

Reliability: most important attribute of
product quality, study of failures, their
causes and consequences
– Some data

Safety: dealing with most critical failures
– Lack of data/information

©Dr.M.Xie

My work/experience in Reliability

Nuclear power plant monitoring system
Telecommunication system
Traffic control system
Automobile
Aerospace
Mostly concerns software, complex, and
safety-critical system

©Dr.M.Xie

Reliability of Software System

Complex systems contain both software and hardware
Software is different from hardware in many aspects
Hardware failures are easier to deal with
Software problems are usually solved only by the
developer
For software system
– Failure cause is identified after a failure
– Action is taken to remove the cause
– Same type of failure will not occur
– Time to next failure is likely to be longer

©Dr.M.Xie

" Software Hall of Shame"
(from IEEE Spectrum, Sept 05 issue)

http://www.spectrum.ieee.org/sep05/1685/failt1

©Dr.M.Xie

©Dr.M.Xie

Difficulties in SR Analysis

Software failures can be tracked to
individual mistake
Although in theory we can make it
correct, in reality it is impossible
Testing is costly
Testing cannot prove the correctness
There are many testing techniques
with varying degree of efficiency
Difficult to improve reliability

Requirement

Coding

Testing

Design

©Dr.M.Xie

Software Reliability
compared to hardware

The process is essentially a design process
Mainly human errors involved in creating the
software
No physical aging of the software
Traditional redundancy is not useful
Problems can be removed permanently
Theoretically it can be made perfect
Testing takes up to 50% of development resource
…

©Dr.M.Xie

SOFTWARE RELIABILITY MODELSSOFTWARE RELIABILITY MODELS
Past, Present, and Future

M. Xie
Dept of Industrial & Systems Engineering

National University of Singapore

©Dr.M.Xie

Markov Process Models

Jelinski-Moranda
Earliest model
Equal contribution of
all faults
Finite number of
possible failures
Debugging assumed to
be perfect

1

2

3

4

5

6

7

0 t1 t2 t3 t4 t5 t6 t 7 t

N(t)

©Dr.M.Xie

The Jelinski-Moranda Model

the number of initial faults is an unknown but fixed constant;
a detected fault is removed immediately and no new fault is
introduced;
times between failures are independent, exponentially
distributed random quantities
all remaining software faults contribute the same amount to the
software failure intensity
The time between the (i-1):st and the i:th failures is
exponentially distributed with

λi=φ[N−(i−1)], i=1,2,...,N0.

©Dr.M.Xie

“Equal Size” Assumption

Many models assumes that
all faults contribute the
same to the total failure
probability
This is equivalent to that all
faults are of the same “size”

Faults are not of equal size
“Large” faults are likely to be
detected at the beginning
“Small” faults are difficult to
detect

Input Space

Input space covered
by the i:th fault

Removed fault

Input Space

Input space covered
by the i:th fault

Removed fault

©Dr.M.Xie

Input-Domain Based Models

Started with the concept of correctness
Select test cases and show the percentage of
those that leads to a failure

Closely related to operational profile
Can be modified incorporating probability
of input-domain data

©Dr.M.Xie

• An important class of SRGMs that has been
widely studied by researchers and used by
practitioners.

• The testing process is assumed to follow an
NHPP whose mean value function is m(t).

• The instantaneous failure intensity at time t can
be calculated by . dttdmt /)()(=λ

NHPP Models

©Dr.M.Xie

The Goel-Okumoto Model

Probably the most well-known SRM
Many similar models
Derived assuming the same detection rate of
remaining faults
Simple model for finite number of faults

m (t) = a 1 - e -b t , a>0, b>0;

λ (t) = d m (t)
d t

 = ab e -b t .

©Dr.M.Xie

S-shaped NHPP Model

Failure intensity increases at the beginning
Suitable for the modeling of a learning process
Has shown to be good for a number of data sets

t

m(t)

0

S-shaped model

the GO-model

 m (t) = a 1 - (1 + bt) e -b t ; b>0 .

©Dr.M.Xie

The Duane Model

Mean value function

Very flexible model
– b<1 improving
– b<1 deteriorating

Duane plot and graphical interpretation
available
Simple and reasonably accurate
Widely used for repairable systems

m(t)= at b
b=1b=1.3

b=0.6

1)()(−== babtdt
tdmtλ

©Dr.M.Xie

The Duane Plot

A useful relationship:
lnm(t)=lna+blnt

Plot cumulative number of
failures vs t on a log-log scale
Fit the plot with a straight line
slope=b and intercept=lna
The validity of the model can
be checked BEFORE its use

100

cu
m

ul
at

iv
e

nu
m

be
r o

f
fa

ilu
re

s

1 10

time

y = 40.226x
0.429

©Dr.M.Xie

Advantages of Graphical
Approach

(a) Model verification is very simple
(b) Parameter estimation can be carried out
easily
(c) Model can be validated BEFORE
parameter estimation
(d) Plotting can be done using simple
spreadsheet software

©Dr.M.Xie

Reliability of Combined System

Assuming both are needed for the system to work
Failure of one should not affect the other
The failure causes should be able to be isolated
Software may not be more reliable than hardware
Important to consider serious failures

hardware software

Reliabilitysystem=Rhardware⋅Rsoftware

©Dr.M.Xie

Definition of software reliability

Many different measures used (not
appropriate)

the number of faults
defect density
defect per module
defect per KLOC
defect per FP

©Dr.M.Xie

Reliability vs # Faults

The number of faults is not a good reliability
measure
Testing should focus on reliability improvement
rather than removing more faults
Reliability depends on the number of faults
Software metrics can be used to estimate the
number of faults
Estimates of the number of faults are not
accurate

©Dr.M.Xie

Random Testing

Test cases are selected
randomly
Test cases should follow
the operational profile -
input states are selected in
accordance of the
probabilities of occurrence
when used
This will minimize the
probability of failure
experienced by the
customers

Test
cases

Test
results

Software

Analysis

©Dr.M.Xie

Randomness of Failures

Number of failures per
unit time is random
Time to next failure is
random
This is because
– the location of faults in the

programme is unknown
– the usage of programme is

not predictable

I
N
P
U
T

Correctness of
the results

UNKNOWN

©Dr.M.Xie

“Theory” of Testing

Input space, software, output space
Some inputs lead to a failure because of a fault
The fault can be identified and removed

I
N
P
U
T

O
U
T
P
U
T

©Dr.M.Xie

Effect of Imperfect Debugging

• Most of the software testing processes belong to
the imperfect debugging ones.

• The development of the software is extremely
time-consuming and costly.

• It is important to know the effect of imperfect
debugging on software cost.

©Dr.M.Xie

Models using Software Metrics

Relate the number of faults to various software
metrics and a relationship can be derived using
earlier projects
Existing studies focus on the number of
faults
Useful for the planning
Require information from earlier and
similar projects

©Dr.M.Xie

Need for and
Availability of Data

Data (collection) can be used
– to help with quantitative analysis
– to study the current system/project
– to help identify weak spots in the process

and system
– to be used as a record

Data are and should be available

©Dr.M.Xie

Uses of SR Models

To assess the reliability of software
To predict future failure behavior
To study the effective testing technique
To help allocating resources
To provide information how to improve
the process and product

©Dr.M.Xie

Release Time Determination
- cost minimization

Time to minimize total cost
– need a cost model

c(T) = c1m(T) + c2 m(∞)-m(T) + c3T.

c1 = expected cost of removing a fault in testing
c2 = expected cost of removing a fault in field
c3 = expected cost per unit time of software testing
including the cost of testing, the cost due to a
delay in releasing the software, etc.

cost of unreliability cost o
f te

stin
gtotal software cost

T

C(T)

0 optimum release time

©Dr.M.Xie

Summary on use of software
reliability models

Need to incorporate software metrics
Need to consider testing strategies
Reliability as an aspect of quality
Understanding of randomness and statistical
errors a necessity
Suitable model selection approaches should
be developed
Models should be used in decision-making

	SOFTWARE SYSTEM SAFETY AND RELIABILITY
	Quality, Reliability, Safety
	My work/experience in Reliability
	Reliability of Software System
	" Software Hall of Shame" �(from IEEE Spectrum, Sept 05 issue)
	Difficulties in SR Analysis
	Software Reliability �compared to hardware
	SOFTWARE RELIABILITY MODELS �Past, Present, and Future
	Markov Process Models
	The Jelinski-Moranda Model
	“Equal Size” Assumption
	Input-Domain Based Models
	The Goel-Okumoto Model
	S-shaped NHPP Model
	The Duane Model
	The Duane Plot
	Advantages of Graphical Approach
	Reliability of Combined System
	Definition of software reliability
	Reliability vs # Faults
	Random Testing
	Randomness of Failures
	“Theory” of Testing
	Models using Software Metrics
	Need for and �Availability of Data
	Uses of SR Models
	Release Time Determination�- cost minimization
	Summary on use of software reliability models

